ປະເມີນ
0
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}\left(\frac{e^{x}-e^{x}}{2}\right)^{14}\mathrm{d}x
ເພື່ອຄູນເລກກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ບວກເລກກຳລັງຂອງພວກມັນ. ບວກ 3 ແລະ 11 ເພື່ອໃຫ້ໄດ້ 14.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}\left(\frac{0}{2}\right)^{14}\mathrm{d}x
ຮວມ e^{x} ແລະ -e^{x} ເພື່ອຮັບ 0.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}0^{14}\mathrm{d}x
ສູນຫານໃຫ້ຈຳນວນທີ່ບໍ່ແມ່ນສູນຈະໄດ້ສູນ.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}0\mathrm{d}x
ຄຳນວນ 0 ກຳລັງ 14 ແລະ ໄດ້ 0.
\int 0\mathrm{d}x
ປະເມີນປະລິພັນຈຳກັດເຂດເສຍກ່ອນ.
0
ຊອກຫາສ່ວນປະກອບຂອງ 0 ໂດຍການນຳໃຊ້ຕາຕະລາງຂອງກົດລະບຽບການເຊື່ອມໂຍງທົ່ວໄປ \int a\mathrm{d}x=ax.
0+0
ປະລິພັນທີ່ແນ່ນອນຂອງພະຫຸນາມແມ່ນປະຕິຍານຸພັນຂອງພະຫຸນາມທີ່ປະເມີນແລ້ວໃນລະດັບສູງກວ່າຂອງການຮວມລົບໃຫ້ປະຕິຍານຸພັນທີ່ປະເມີນແລ້ວໃນລະດັບຂໍ້ຈຳກັດທີ່ຕ່ຳກວ່າຂອງການລວມກັນ.
0
ເຮັດໃຫ້ງ່າຍ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}