Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ບອກຄວາມແຕກຕ່າງ w.r.t. x
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\int x\left(4+4x^{2}+\left(x^{2}\right)^{2}\right)\mathrm{d}x
ໃຊ້ທິດສະດີທະວິນາມ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(2+x^{2}\right)^{2}.
\int x\left(4+4x^{2}+x^{4}\right)\mathrm{d}x
ເພື່ອຍົກເລກກຳລັງໃຫ້ສູງຂຶ້ນ, ໃຫ້ຄູນເລກກຳລັງນັ້ນ. ຄູນ 2 ກັບ 2 ເພື່ອໃຫ້ໄດ້ 4.
\int 4x+4x^{3}+x^{5}\mathrm{d}x
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x ດ້ວຍ 4+4x^{2}+x^{4}.
\int 4x\mathrm{d}x+\int 4x^{3}\mathrm{d}x+\int x^{5}\mathrm{d}x
ປະສົມປະສານການລວມພົດໂດຍພົດ.
4\int x\mathrm{d}x+4\int x^{3}\mathrm{d}x+\int x^{5}\mathrm{d}x
ແຍກຕົວປະກອບຄົງທີ່ອອກໃນແຕ່ລະພົດ.
2x^{2}+4\int x^{3}\mathrm{d}x+\int x^{5}\mathrm{d}x
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x\mathrm{d}x ກັບ \frac{x^{2}}{2}. ຄູນ 4 ໃຫ້ກັບ \frac{x^{2}}{2}.
2x^{2}+x^{4}+\int x^{5}\mathrm{d}x
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x^{3}\mathrm{d}x ກັບ \frac{x^{4}}{4}. ຄູນ 4 ໃຫ້ກັບ \frac{x^{4}}{4}.
2x^{2}+x^{4}+\frac{x^{6}}{6}
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x^{5}\mathrm{d}x ກັບ \frac{x^{6}}{6}.
\frac{x^{6}}{6}+x^{4}+2x^{2}+С
ຖ້າ F\left(x\right) ແມ່ນປະລິຍານຸພັນຂອງ f\left(x\right), ຈາກນັ້ນຊຸດຂອງປະລິຍານຸພັນທັງໝົດຂອງ f\left(x\right) ທີ່ໃຫ້ມາໂດຍ F\left(x\right)+C. ສະນັ້ນ, ເພີ່ມຄ່າຄົງທີ່ຂອງການລວມກຸ່ມຂອງ C\in \mathrm{R} ເຂົ້າໃນຜົນໄດ້ຮັບ.