Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\int 3x^{2}+2x+1\mathrm{d}x
ປະເມີນປະລິພັນຈຳກັດເຂດເສຍກ່ອນ.
\int 3x^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int 1\mathrm{d}x
ປະສົມປະສານການລວມພົດໂດຍພົດ.
3\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int 1\mathrm{d}x
ແຍກຕົວປະກອບຄົງທີ່ອອກໃນແຕ່ລະພົດ.
x^{3}+2\int x\mathrm{d}x+\int 1\mathrm{d}x
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x^{2}\mathrm{d}x ກັບ \frac{x^{3}}{3}. ຄູນ 3 ໃຫ້ກັບ \frac{x^{3}}{3}.
x^{3}+x^{2}+\int 1\mathrm{d}x
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x\mathrm{d}x ກັບ \frac{x^{2}}{2}. ຄູນ 2 ໃຫ້ກັບ \frac{x^{2}}{2}.
x^{3}+x^{2}+x
ຊອກຫາສ່ວນປະກອບຂອງ 1 ໂດຍການນຳໃຊ້ຕາຕະລາງຂອງກົດລະບຽບການເຊື່ອມໂຍງທົ່ວໄປ \int a\mathrm{d}x=ax.
3^{3}+3^{2}+3-\left(1^{3}+1^{2}+1\right)
ປະລິພັນທີ່ແນ່ນອນຂອງພະຫຸນາມແມ່ນປະຕິຍານຸພັນຂອງພະຫຸນາມທີ່ປະເມີນແລ້ວໃນລະດັບສູງກວ່າຂອງການຮວມລົບໃຫ້ປະຕິຍານຸພັນທີ່ປະເມີນແລ້ວໃນລະດັບຂໍ້ຈຳກັດທີ່ຕ່ຳກວ່າຂອງການລວມກັນ.
36
ເຮັດໃຫ້ງ່າຍ.