Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\int _{0}^{2}16x^{2}-8xx^{3}+\left(x^{3}\right)^{2}\mathrm{d}x
ໃຊ້ທິດສະດີທະວິນາມ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(4x-x^{3}\right)^{2}.
\int _{0}^{2}16x^{2}-8x^{4}+\left(x^{3}\right)^{2}\mathrm{d}x
ເພື່ອຄູນເລກກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ບວກເລກກຳລັງຂອງພວກມັນ. ບວກ 1 ແລະ 3 ເພື່ອໃຫ້ໄດ້ 4.
\int _{0}^{2}16x^{2}-8x^{4}+x^{6}\mathrm{d}x
ເພື່ອຍົກເລກກຳລັງໃຫ້ສູງຂຶ້ນ, ໃຫ້ຄູນເລກກຳລັງນັ້ນ. ຄູນ 3 ກັບ 2 ເພື່ອໃຫ້ໄດ້ 6.
\int 16x^{2}-8x^{4}+x^{6}\mathrm{d}x
ປະເມີນປະລິພັນຈຳກັດເຂດເສຍກ່ອນ.
\int 16x^{2}\mathrm{d}x+\int -8x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
ປະສົມປະສານການລວມພົດໂດຍພົດ.
16\int x^{2}\mathrm{d}x-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
ແຍກຕົວປະກອບຄົງທີ່ອອກໃນແຕ່ລະພົດ.
\frac{16x^{3}}{3}-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x^{2}\mathrm{d}x ກັບ \frac{x^{3}}{3}. ຄູນ 16 ໃຫ້ກັບ \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\int x^{6}\mathrm{d}x
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x^{4}\mathrm{d}x ກັບ \frac{x^{5}}{5}. ຄູນ -8 ໃຫ້ກັບ \frac{x^{5}}{5}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\frac{x^{7}}{7}
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x^{6}\mathrm{d}x ກັບ \frac{x^{7}}{7}.
\frac{x^{7}}{7}-\frac{8x^{5}}{5}+\frac{16x^{3}}{3}
ເຮັດໃຫ້ງ່າຍ.
\frac{2^{7}}{7}-\frac{8}{5}\times 2^{5}+\frac{16}{3}\times 2^{3}-\left(\frac{0^{7}}{7}-\frac{8}{5}\times 0^{5}+\frac{16}{3}\times 0^{3}\right)
ປະລິພັນທີ່ແນ່ນອນຂອງພະຫຸນາມແມ່ນປະຕິຍານຸພັນຂອງພະຫຸນາມທີ່ປະເມີນແລ້ວໃນລະດັບສູງກວ່າຂອງການຮວມລົບໃຫ້ປະຕິຍານຸພັນທີ່ປະເມີນແລ້ວໃນລະດັບຂໍ້ຈຳກັດທີ່ຕ່ຳກວ່າຂອງການລວມກັນ.
\frac{1024}{105}
ເຮັດໃຫ້ງ່າຍ.