Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\int x^{2}+5x+2\mathrm{d}x
ປະເມີນປະລິພັນຈຳກັດເຂດເສຍກ່ອນ.
\int x^{2}\mathrm{d}x+\int 5x\mathrm{d}x+\int 2\mathrm{d}x
ປະສົມປະສານການລວມພົດໂດຍພົດ.
\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x+\int 2\mathrm{d}x
ແຍກຕົວປະກອບຄົງທີ່ອອກໃນແຕ່ລະພົດ.
\frac{x^{3}}{3}+5\int x\mathrm{d}x+\int 2\mathrm{d}x
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x^{2}\mathrm{d}x ກັບ \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\frac{5x^{2}}{2}+\int 2\mathrm{d}x
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x\mathrm{d}x ກັບ \frac{x^{2}}{2}. ຄູນ 5 ໃຫ້ກັບ \frac{x^{2}}{2}.
\frac{x^{3}}{3}+\frac{5x^{2}}{2}+2x
ຊອກຫາສ່ວນປະກອບຂອງ 2 ໂດຍການນຳໃຊ້ຕາຕະລາງຂອງກົດລະບຽບການເຊື່ອມໂຍງທົ່ວໄປ \int a\mathrm{d}x=ax.
\frac{10^{3}}{3}+\frac{5}{2}\times 10^{2}+2\times 10-\left(\frac{0^{3}}{3}+\frac{5}{2}\times 0^{2}+2\times 0\right)
ປະລິພັນທີ່ແນ່ນອນຂອງພະຫຸນາມແມ່ນປະຕິຍານຸພັນຂອງພະຫຸນາມທີ່ປະເມີນແລ້ວໃນລະດັບສູງກວ່າຂອງການຮວມລົບໃຫ້ປະຕິຍານຸພັນທີ່ປະເມີນແລ້ວໃນລະດັບຂໍ້ຈຳກັດທີ່ຕ່ຳກວ່າຂອງການລວມກັນ.
\frac{1810}{3}
ເຮັດໃຫ້ງ່າຍ.