Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\int 2^{x}+x^{2}\mathrm{d}x
ປະເມີນປະລິພັນຈຳກັດເຂດເສຍກ່ອນ.
\int 2^{x}\mathrm{d}x+\int x^{2}\mathrm{d}x
ປະສົມປະສານການລວມພົດໂດຍພົດ.
\frac{2^{x}}{\ln(2)}+\int x^{2}\mathrm{d}x
ໃຊ້ \int x^{k}\mathrm{d}k=\frac{x^{k}}{\ln(x)} ຈາກຕາຕະລາງຂອງສ່ວນປະກອບທົ່ວໄປເພື່ອໃຫ້ໄດ້ຜົນຮັບ.
\frac{2^{x}}{\ln(2)}+\frac{x^{3}}{3}
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x^{2}\mathrm{d}x ກັບ \frac{x^{3}}{3}.
2^{1}\ln(2)^{-1}+\frac{1^{3}}{3}-\left(2^{0}\ln(2)^{-1}+\frac{0^{3}}{3}\right)
ປະລິພັນທີ່ແນ່ນອນຂອງພະຫຸນາມແມ່ນປະຕິຍານຸພັນຂອງພະຫຸນາມທີ່ປະເມີນແລ້ວໃນລະດັບສູງກວ່າຂອງການຮວມລົບໃຫ້ປະຕິຍານຸພັນທີ່ປະເມີນແລ້ວໃນລະດັບຂໍ້ຈຳກັດທີ່ຕ່ຳກວ່າຂອງການລວມກັນ.
\frac{1}{3}+\frac{1}{\ln(2)}
ເຮັດໃຫ້ງ່າຍ.