Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\int x^{2}+\sin(x)\mathrm{d}x
ປະເມີນປະລິພັນຈຳກັດເຂດເສຍກ່ອນ.
\int x^{2}\mathrm{d}x+\int \sin(x)\mathrm{d}x
ປະສົມປະສານການລວມພົດໂດຍພົດ.
\frac{x^{3}}{3}+\int \sin(x)\mathrm{d}x
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x^{2}\mathrm{d}x ກັບ \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\cos(x)
ໃຊ້ \int \sin(x)\mathrm{d}x=-\cos(x) ຈາກຕາຕະລາງຂອງສ່ວນປະກອບທົ່ວໄປເພື່ອໃຫ້ໄດ້ຜົນຮັບ.
\frac{1^{3}}{3}-\cos(1)-\left(\frac{0^{3}}{3}-\cos(0)\right)
ປະລິພັນທີ່ແນ່ນອນຂອງພະຫຸນາມແມ່ນປະຕິຍານຸພັນຂອງພະຫຸນາມທີ່ປະເມີນແລ້ວໃນລະດັບສູງກວ່າຂອງການຮວມລົບໃຫ້ປະຕິຍານຸພັນທີ່ປະເມີນແລ້ວໃນລະດັບຂໍ້ຈຳກັດທີ່ຕ່ຳກວ່າຂອງການລວມກັນ.
\frac{1}{3}\left(4-3\cos(1)\right)
ເຮັດໃຫ້ງ່າຍ.