Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\int \frac{x^{2}}{2}-x^{4}\mathrm{d}x
ປະເມີນປະລິພັນຈຳກັດເຂດເສຍກ່ອນ.
\int \frac{x^{2}}{2}\mathrm{d}x+\int -x^{4}\mathrm{d}x
ປະສົມປະສານການລວມພົດໂດຍພົດ.
\frac{\int x^{2}\mathrm{d}x}{2}-\int x^{4}\mathrm{d}x
ແຍກຕົວປະກອບຄົງທີ່ອອກໃນແຕ່ລະພົດ.
\frac{x^{3}}{6}-\int x^{4}\mathrm{d}x
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x^{2}\mathrm{d}x ກັບ \frac{x^{3}}{3}. ຄູນ \frac{1}{2} ໃຫ້ກັບ \frac{x^{3}}{3}.
\frac{x^{3}}{6}-\frac{x^{5}}{5}
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x^{4}\mathrm{d}x ກັບ \frac{x^{5}}{5}. ຄູນ -1 ໃຫ້ກັບ \frac{x^{5}}{5}.
\frac{1}{6}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{3}-\frac{1}{5}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{5}-\left(\frac{0^{3}}{6}-\frac{0^{5}}{5}\right)
ປະລິພັນທີ່ແນ່ນອນຂອງພະຫຸນາມແມ່ນປະຕິຍານຸພັນຂອງພະຫຸນາມທີ່ປະເມີນແລ້ວໃນລະດັບສູງກວ່າຂອງການຮວມລົບໃຫ້ປະຕິຍານຸພັນທີ່ປະເມີນແລ້ວໃນລະດັບຂໍ້ຈຳກັດທີ່ຕ່ຳກວ່າຂອງການລວມກັນ.
\frac{\sqrt{2}}{60}
ເຮັດໃຫ້ງ່າຍ.