Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\int -3x^{2}+11x+25\mathrm{d}x
ປະເມີນປະລິພັນຈຳກັດເຂດເສຍກ່ອນ.
\int -3x^{2}\mathrm{d}x+\int 11x\mathrm{d}x+\int 25\mathrm{d}x
ປະສົມປະສານການລວມພົດໂດຍພົດ.
-3\int x^{2}\mathrm{d}x+11\int x\mathrm{d}x+\int 25\mathrm{d}x
ແຍກຕົວປະກອບຄົງທີ່ອອກໃນແຕ່ລະພົດ.
-x^{3}+11\int x\mathrm{d}x+\int 25\mathrm{d}x
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x^{2}\mathrm{d}x ກັບ \frac{x^{3}}{3}. ຄູນ -3 ໃຫ້ກັບ \frac{x^{3}}{3}.
-x^{3}+\frac{11x^{2}}{2}+\int 25\mathrm{d}x
ຕັ້ງແຕ່ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} ສຳລັບ k\neq -1, ປ່ຽນ \int x\mathrm{d}x ກັບ \frac{x^{2}}{2}. ຄູນ 11 ໃຫ້ກັບ \frac{x^{2}}{2}.
-x^{3}+\frac{11x^{2}}{2}+25x
ຊອກຫາສ່ວນປະກອບຂອງ 25 ໂດຍການນຳໃຊ້ຕາຕະລາງຂອງກົດລະບຽບການເຊື່ອມໂຍງທົ່ວໄປ \int a\mathrm{d}x=ax.
-5^{3}+\frac{11}{2}\times 5^{2}+25\times 5-\left(-\left(-15\right)^{3}+\frac{11}{2}\left(-15\right)^{2}+25\left(-15\right)\right)
ປະລິພັນທີ່ແນ່ນອນຂອງພະຫຸນາມແມ່ນປະຕິຍານຸພັນຂອງພະຫຸນາມທີ່ປະເມີນແລ້ວໃນລະດັບສູງກວ່າຂອງການຮວມລົບໃຫ້ປະຕິຍານຸພັນທີ່ປະເມີນແລ້ວໃນລະດັບຂໍ້ຈຳກັດທີ່ຕ່ຳກວ່າຂອງການລວມກັນ.
-4100
ເຮັດໃຫ້ງ່າຍ.