Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ບອກຄວາມແຕກຕ່າງ w.r.t. x
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x-1\right)}{x-1}+\frac{1}{x-1})
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ x ໃຫ້ກັບ \frac{x-1}{x-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x-1\right)+1}{x-1})
ເນື່ອງຈາກ \frac{x\left(x-1\right)}{x-1} ແລະ \frac{1}{x-1} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-x+1}{x-1})
ຄູນໃນເສດສ່ວນ x\left(x-1\right)+1.
\frac{\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}+1)-\left(x^{2}-x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)}{\left(x^{1}-1\right)^{2}}
ສຳລັບສອງຟັງຊັນໃດກໍຕາມທີ່ຊອກຫາອະນຸພັນໄດ້, ອະນຸພັນຂອງຜົນຫານຂອງສອງຟັງຊັນແມ່ນຕົວຫານ ຄູນໃຫ້ກັບອະນຸພັນຂອງຕົວເສດ ລົບໃຫ້ກັບຕົວເສດ ຄູນໃຫ້ອະນຸພັນຂອງຕົວຫານ, ທັງໝົດຫານໃຫ້ອະນຸພັນທີ່ຂຶ້ນຮາກແລ້ວ.
\frac{\left(x^{1}-1\right)\left(2x^{2-1}-x^{1-1}\right)-\left(x^{2}-x^{1}+1\right)x^{1-1}}{\left(x^{1}-1\right)^{2}}
ອະນຸພັນຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຜົນຮວມຂອງອະນຸພັນຂອງພົດມັນ. ອະນຸພັນຂອງພົດແນ່ນອນໃດກໍຕາມແມ່ນ 0. ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
\frac{\left(x^{1}-1\right)\left(2x^{1}-x^{0}\right)-\left(x^{2}-x^{1}+1\right)x^{0}}{\left(x^{1}-1\right)^{2}}
ເຮັດໃຫ້ງ່າຍ.
\frac{x^{1}\times 2x^{1}+x^{1}\left(-1\right)x^{0}-2x^{1}-\left(-x^{0}\right)-\left(x^{2}-x^{1}+1\right)x^{0}}{\left(x^{1}-1\right)^{2}}
ຄູນ x^{1}-1 ໃຫ້ກັບ 2x^{1}-x^{0}.
\frac{x^{1}\times 2x^{1}+x^{1}\left(-1\right)x^{0}-2x^{1}-\left(-x^{0}\right)-\left(x^{2}x^{0}-x^{1}x^{0}+x^{0}\right)}{\left(x^{1}-1\right)^{2}}
ຄູນ x^{2}-x^{1}+1 ໃຫ້ກັບ x^{0}.
\frac{2x^{1+1}-x^{1}-2x^{1}-\left(-x^{0}\right)-\left(x^{2}-x^{1}+x^{0}\right)}{\left(x^{1}-1\right)^{2}}
ເພື່ອຄູນກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ເພີ່ມເລກກຳລັງຂອງພວກມັນ.
\frac{2x^{2}-x^{1}-2x^{1}+x^{0}-\left(x^{2}-x^{1}+x^{0}\right)}{\left(x^{1}-1\right)^{2}}
ເຮັດໃຫ້ງ່າຍ.
\frac{x^{2}-2x^{1}}{\left(x^{1}-1\right)^{2}}
ຮວມຄຳສັບ.
\frac{x^{2}-2x}{\left(x-1\right)^{2}}
ສຳລັບ t ໃດກໍຕາມ, t^{1}=t.