Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x (complex solution)
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

5x^{2}-2x+3=0
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ 0 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ 6x.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 5\times 3}}{2\times 5}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 5 ສຳລັບ a, -2 ສຳລັບ b ແລະ 3 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 5\times 3}}{2\times 5}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -2.
x=\frac{-\left(-2\right)±\sqrt{4-20\times 3}}{2\times 5}
ຄູນ -4 ໃຫ້ກັບ 5.
x=\frac{-\left(-2\right)±\sqrt{4-60}}{2\times 5}
ຄູນ -20 ໃຫ້ກັບ 3.
x=\frac{-\left(-2\right)±\sqrt{-56}}{2\times 5}
ເພີ່ມ 4 ໃສ່ -60.
x=\frac{-\left(-2\right)±2\sqrt{14}i}{2\times 5}
ເອົາຮາກຂັ້ນສອງຂອງ -56.
x=\frac{2±2\sqrt{14}i}{2\times 5}
ຈຳນວນກົງກັນຂ້າມຂອງ -2 ແມ່ນ 2.
x=\frac{2±2\sqrt{14}i}{10}
ຄູນ 2 ໃຫ້ກັບ 5.
x=\frac{2+2\sqrt{14}i}{10}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{2±2\sqrt{14}i}{10} ເມື່ອ ± ບວກ. ເພີ່ມ 2 ໃສ່ 2i\sqrt{14}.
x=\frac{1+\sqrt{14}i}{5}
ຫານ 2+2i\sqrt{14} ດ້ວຍ 10.
x=\frac{-2\sqrt{14}i+2}{10}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{2±2\sqrt{14}i}{10} ເມື່ອ ± ເປັນລົບ. ລົບ 2i\sqrt{14} ອອກຈາກ 2.
x=\frac{-\sqrt{14}i+1}{5}
ຫານ 2-2i\sqrt{14} ດ້ວຍ 10.
x=\frac{1+\sqrt{14}i}{5} x=\frac{-\sqrt{14}i+1}{5}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
5x^{2}-2x+3=0
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ 0 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ 6x.
5x^{2}-2x=-3
ລົບ 3 ອອກຈາກທັງສອງຂ້າງ. ອັນໃດກໍໄດ້ຫານຈາກສູນໄດ້ຈຳນວນລົບຂອງມັນ.
\frac{5x^{2}-2x}{5}=-\frac{3}{5}
ຫານທັງສອງຂ້າງດ້ວຍ 5.
x^{2}-\frac{2}{5}x=-\frac{3}{5}
ການຫານດ້ວຍ 5 ຈະຍົກເລີກການຄູນດ້ວຍ 5.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=-\frac{3}{5}+\left(-\frac{1}{5}\right)^{2}
ຫານ -\frac{2}{5}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{5}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{5} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-\frac{3}{5}+\frac{1}{25}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{5} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{2}{5}x+\frac{1}{25}=-\frac{14}{25}
ເພີ່ມ -\frac{3}{5} ໃສ່ \frac{1}{25} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{1}{5}\right)^{2}=-\frac{14}{25}
ຕົວປະກອບ x^{2}-\frac{2}{5}x+\frac{1}{25}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{-\frac{14}{25}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{1}{5}=\frac{\sqrt{14}i}{5} x-\frac{1}{5}=-\frac{\sqrt{14}i}{5}
ເຮັດໃຫ້ງ່າຍ.
x=\frac{1+\sqrt{14}i}{5} x=\frac{-\sqrt{14}i+1}{5}
ເພີ່ມ \frac{1}{5} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.