ບອກຄວາມແຕກຕ່າງ w.r.t. x
\frac{6}{\left(x+2\right)^{2}}
ປະເມີນ
\frac{3x}{x+2}
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\frac{\left(x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1})-3x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+2)}{\left(x^{1}+2\right)^{2}}
ສຳລັບສອງຟັງຊັນໃດກໍຕາມທີ່ຊອກຫາອະນຸພັນໄດ້, ອະນຸພັນຂອງຜົນຫານຂອງສອງຟັງຊັນແມ່ນຕົວຫານ ຄູນໃຫ້ກັບອະນຸພັນຂອງຕົວເສດ ລົບໃຫ້ກັບຕົວເສດ ຄູນໃຫ້ອະນຸພັນຂອງຕົວຫານ, ທັງໝົດຫານໃຫ້ອະນຸພັນທີ່ຂຶ້ນຮາກແລ້ວ.
\frac{\left(x^{1}+2\right)\times 3x^{1-1}-3x^{1}x^{1-1}}{\left(x^{1}+2\right)^{2}}
ອະນຸພັນຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຜົນຮວມຂອງອະນຸພັນຂອງພົດມັນ. ອະນຸພັນຂອງພົດແນ່ນອນໃດກໍຕາມແມ່ນ 0. ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
\frac{\left(x^{1}+2\right)\times 3x^{0}-3x^{1}x^{0}}{\left(x^{1}+2\right)^{2}}
ເຮັດເລກຄະນິດ.
\frac{x^{1}\times 3x^{0}+2\times 3x^{0}-3x^{1}x^{0}}{\left(x^{1}+2\right)^{2}}
ຂະຫຍາຍໂດຍໃຊ້ຄຸນສົມບັດທີ່ແບ່ງໄດ້.
\frac{3x^{1}+2\times 3x^{0}-3x^{1}}{\left(x^{1}+2\right)^{2}}
ເພື່ອຄູນກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ເພີ່ມເລກກຳລັງຂອງພວກມັນ.
\frac{3x^{1}+6x^{0}-3x^{1}}{\left(x^{1}+2\right)^{2}}
ເຮັດເລກຄະນິດ.
\frac{\left(3-3\right)x^{1}+6x^{0}}{\left(x^{1}+2\right)^{2}}
ຮວມຄຳສັບ.
\frac{6x^{0}}{\left(x^{1}+2\right)^{2}}
ລົບ 3 ອອກຈາກ 3.
\frac{6x^{0}}{\left(x+2\right)^{2}}
ສຳລັບ t ໃດກໍຕາມ, t^{1}=t.
\frac{6\times 1}{\left(x+2\right)^{2}}
ສຳລັບ t ໃດກໍຕາມຍົກເວັ້ນ 0, t^{0}=1.
\frac{6}{\left(x+2\right)^{2}}
ສຳລັບ t ໃດກໍຕາມ, t\times 1=t ແລະ 1t=t.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}