Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ຂະຫຍາຍ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x+y ກັບ x-y ແມ່ນ \left(x+y\right)\left(x-y\right). ຄູນ \frac{x-y}{x+y} ໃຫ້ກັບ \frac{x-y}{x-y}. ຄູນ \frac{x+y}{x-y} ໃຫ້ກັບ \frac{x+y}{x+y}.
\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
ເນື່ອງຈາກ \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} ແລະ \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
ຄູນໃນເສດສ່ວນ \left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right).
\frac{-4xy}{\left(x+y\right)\left(x-y\right)}
ຮວມຂໍ້ກຳນົດໃນ x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}.
\frac{-4xy}{x^{2}-y^{2}}
ຂະຫຍາຍ \left(x+y\right)\left(x-y\right).
\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x+y ກັບ x-y ແມ່ນ \left(x+y\right)\left(x-y\right). ຄູນ \frac{x-y}{x+y} ໃຫ້ກັບ \frac{x-y}{x-y}. ຄູນ \frac{x+y}{x-y} ໃຫ້ກັບ \frac{x+y}{x+y}.
\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
ເນື່ອງຈາກ \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} ແລະ \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
ຄູນໃນເສດສ່ວນ \left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right).
\frac{-4xy}{\left(x+y\right)\left(x-y\right)}
ຮວມຂໍ້ກຳນົດໃນ x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}.
\frac{-4xy}{x^{2}-y^{2}}
ຂະຫຍາຍ \left(x+y\right)\left(x-y\right).