ປະເມີນ
-\frac{4xy}{x^{2}-y^{2}}
ຂະຫຍາຍ
-\frac{4xy}{x^{2}-y^{2}}
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x+y ກັບ x-y ແມ່ນ \left(x+y\right)\left(x-y\right). ຄູນ \frac{x-y}{x+y} ໃຫ້ກັບ \frac{x-y}{x-y}. ຄູນ \frac{x+y}{x-y} ໃຫ້ກັບ \frac{x+y}{x+y}.
\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
ເນື່ອງຈາກ \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} ແລະ \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
ຄູນໃນເສດສ່ວນ \left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right).
\frac{-4xy}{\left(x+y\right)\left(x-y\right)}
ຮວມຂໍ້ກຳນົດໃນ x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}.
\frac{-4xy}{x^{2}-y^{2}}
ຂະຫຍາຍ \left(x+y\right)\left(x-y\right).
\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x+y ກັບ x-y ແມ່ນ \left(x+y\right)\left(x-y\right). ຄູນ \frac{x-y}{x+y} ໃຫ້ກັບ \frac{x-y}{x-y}. ຄູນ \frac{x+y}{x-y} ໃຫ້ກັບ \frac{x+y}{x+y}.
\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}
ເນື່ອງຈາກ \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} ແລະ \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
ຄູນໃນເສດສ່ວນ \left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right).
\frac{-4xy}{\left(x+y\right)\left(x-y\right)}
ຮວມຂໍ້ກຳນົດໃນ x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}.
\frac{-4xy}{x^{2}-y^{2}}
ຂະຫຍາຍ \left(x+y\right)\left(x-y\right).
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}