ແກ້ສຳລັບ x
x=-5
x=0
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
3x\left(x+3\right)-2\left(x+1\right)^{2}+2=0
ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ 6, ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ 2,3.
3x^{2}+9x-2\left(x+1\right)^{2}+2=0
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 3x ດ້ວຍ x+3.
3x^{2}+9x-2\left(x^{2}+2x+1\right)+2=0
ໃຊ້ທິດສະດີທະວິນາມ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(x+1\right)^{2}.
3x^{2}+9x-2x^{2}-4x-2+2=0
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ -2 ດ້ວຍ x^{2}+2x+1.
x^{2}+9x-4x-2+2=0
ຮວມ 3x^{2} ແລະ -2x^{2} ເພື່ອຮັບ x^{2}.
x^{2}+5x-2+2=0
ຮວມ 9x ແລະ -4x ເພື່ອຮັບ 5x.
x^{2}+5x=0
ເພີ່ມ -2 ແລະ 2 ເພື່ອໃຫ້ໄດ້ 0.
x\left(x+5\right)=0
ຕົວປະກອບຈາກ x.
x=0 x=-5
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x=0 ແລະ x+5=0.
3x\left(x+3\right)-2\left(x+1\right)^{2}+2=0
ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ 6, ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ 2,3.
3x^{2}+9x-2\left(x+1\right)^{2}+2=0
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 3x ດ້ວຍ x+3.
3x^{2}+9x-2\left(x^{2}+2x+1\right)+2=0
ໃຊ້ທິດສະດີທະວິນາມ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(x+1\right)^{2}.
3x^{2}+9x-2x^{2}-4x-2+2=0
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ -2 ດ້ວຍ x^{2}+2x+1.
x^{2}+9x-4x-2+2=0
ຮວມ 3x^{2} ແລະ -2x^{2} ເພື່ອຮັບ x^{2}.
x^{2}+5x-2+2=0
ຮວມ 9x ແລະ -4x ເພື່ອຮັບ 5x.
x^{2}+5x=0
ເພີ່ມ -2 ແລະ 2 ເພື່ອໃຫ້ໄດ້ 0.
x=\frac{-5±\sqrt{5^{2}}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, 5 ສຳລັບ b ແລະ 0 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±5}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 5^{2}.
x=\frac{0}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-5±5}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -5 ໃສ່ 5.
x=0
ຫານ 0 ດ້ວຍ 2.
x=-\frac{10}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-5±5}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 5 ອອກຈາກ -5.
x=-5
ຫານ -10 ດ້ວຍ 2.
x=0 x=-5
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
3x\left(x+3\right)-2\left(x+1\right)^{2}+2=0
ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ 6, ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ 2,3.
3x^{2}+9x-2\left(x+1\right)^{2}+2=0
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 3x ດ້ວຍ x+3.
3x^{2}+9x-2\left(x^{2}+2x+1\right)+2=0
ໃຊ້ທິດສະດີທະວິນາມ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ເພື່ອຂະຫຍາຍ \left(x+1\right)^{2}.
3x^{2}+9x-2x^{2}-4x-2+2=0
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ -2 ດ້ວຍ x^{2}+2x+1.
x^{2}+9x-4x-2+2=0
ຮວມ 3x^{2} ແລະ -2x^{2} ເພື່ອຮັບ x^{2}.
x^{2}+5x-2+2=0
ຮວມ 9x ແລະ -4x ເພື່ອຮັບ 5x.
x^{2}+5x=0
ເພີ່ມ -2 ແລະ 2 ເພື່ອໃຫ້ໄດ້ 0.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}
ຫານ 5, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{5}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{5}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+5x+\frac{25}{4}=\frac{25}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{5}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
\left(x+\frac{5}{2}\right)^{2}=\frac{25}{4}
ຕົວປະກອບ x^{2}+5x+\frac{25}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{5}{2}=\frac{5}{2} x+\frac{5}{2}=-\frac{5}{2}
ເຮັດໃຫ້ງ່າຍ.
x=0 x=-5
ລົບ \frac{5}{2} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}