Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\left(x-2\right)x=\left(x+2\right)\times 3
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບຄ່າໃດຂອງ -2,2,3 ໄດ້ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ \left(x-3\right)\left(x-2\right)\left(x+2\right), ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ x^{2}-x-6,x^{2}-5x+6.
x^{2}-2x=\left(x+2\right)\times 3
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x-2 ດ້ວຍ x.
x^{2}-2x=3x+6
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x+2 ດ້ວຍ 3.
x^{2}-2x-3x=6
ລົບ 3x ອອກຈາກທັງສອງຂ້າງ.
x^{2}-5x=6
ຮວມ -2x ແລະ -3x ເພື່ອຮັບ -5x.
x^{2}-5x-6=0
ລົບ 6 ອອກຈາກທັງສອງຂ້າງ.
a+b=-5 ab=-6
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານ x^{2}-5x-6 ໂດຍໃຊ້ສູດຄຳນວນ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-6 2,-3
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -6.
1-6=-5 2-3=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-6 b=1
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -5.
\left(x-6\right)\left(x+1\right)
ຂຽນນິພົດແບບມີປັດໃຈ \left(x+a\right)\left(x+b\right) ໂດຍໃຊ້ຮາກທີ່ໄດ້ຮັບມາ.
x=6 x=-1
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-6=0 ແລະ x+1=0.
\left(x-2\right)x=\left(x+2\right)\times 3
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບຄ່າໃດຂອງ -2,2,3 ໄດ້ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ \left(x-3\right)\left(x-2\right)\left(x+2\right), ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ x^{2}-x-6,x^{2}-5x+6.
x^{2}-2x=\left(x+2\right)\times 3
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x-2 ດ້ວຍ x.
x^{2}-2x=3x+6
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x+2 ດ້ວຍ 3.
x^{2}-2x-3x=6
ລົບ 3x ອອກຈາກທັງສອງຂ້າງ.
x^{2}-5x=6
ຮວມ -2x ແລະ -3x ເພື່ອຮັບ -5x.
x^{2}-5x-6=0
ລົບ 6 ອອກຈາກທັງສອງຂ້າງ.
a+b=-5 ab=1\left(-6\right)=-6
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ x^{2}+ax+bx-6. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
1,-6 2,-3
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -6.
1-6=-5 2-3=-1
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=-6 b=1
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ -5.
\left(x^{2}-6x\right)+\left(x-6\right)
ຂຽນ x^{2}-5x-6 ຄືນໃໝ່ເປັນ \left(x^{2}-6x\right)+\left(x-6\right).
x\left(x-6\right)+x-6
ແຍກ x ອອກໃນ x^{2}-6x.
\left(x-6\right)\left(x+1\right)
ແຍກຄຳທົ່ວໄປ x-6 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=6 x=-1
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-6=0 ແລະ x+1=0.
\left(x-2\right)x=\left(x+2\right)\times 3
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບຄ່າໃດຂອງ -2,2,3 ໄດ້ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ \left(x-3\right)\left(x-2\right)\left(x+2\right), ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ x^{2}-x-6,x^{2}-5x+6.
x^{2}-2x=\left(x+2\right)\times 3
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x-2 ດ້ວຍ x.
x^{2}-2x=3x+6
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x+2 ດ້ວຍ 3.
x^{2}-2x-3x=6
ລົບ 3x ອອກຈາກທັງສອງຂ້າງ.
x^{2}-5x=6
ຮວມ -2x ແລະ -3x ເພື່ອຮັບ -5x.
x^{2}-5x-6=0
ລົບ 6 ອອກຈາກທັງສອງຂ້າງ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-6\right)}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, -5 ສຳລັບ b ແລະ -6 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-6\right)}}{2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -5.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2}
ຄູນ -4 ໃຫ້ກັບ -6.
x=\frac{-\left(-5\right)±\sqrt{49}}{2}
ເພີ່ມ 25 ໃສ່ 24.
x=\frac{-\left(-5\right)±7}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 49.
x=\frac{5±7}{2}
ຈຳນວນກົງກັນຂ້າມຂອງ -5 ແມ່ນ 5.
x=\frac{12}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{5±7}{2} ເມື່ອ ± ບວກ. ເພີ່ມ 5 ໃສ່ 7.
x=6
ຫານ 12 ດ້ວຍ 2.
x=-\frac{2}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{5±7}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 7 ອອກຈາກ 5.
x=-1
ຫານ -2 ດ້ວຍ 2.
x=6 x=-1
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
\left(x-2\right)x=\left(x+2\right)\times 3
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບຄ່າໃດຂອງ -2,2,3 ໄດ້ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ \left(x-3\right)\left(x-2\right)\left(x+2\right), ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ x^{2}-x-6,x^{2}-5x+6.
x^{2}-2x=\left(x+2\right)\times 3
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x-2 ດ້ວຍ x.
x^{2}-2x=3x+6
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x+2 ດ້ວຍ 3.
x^{2}-2x-3x=6
ລົບ 3x ອອກຈາກທັງສອງຂ້າງ.
x^{2}-5x=6
ຮວມ -2x ແລະ -3x ເພື່ອຮັບ -5x.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
ຫານ -5, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{5}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{5}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{5}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
ເພີ່ມ 6 ໃສ່ \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
ຕົວປະກອບ x^{2}-5x+\frac{25}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
ເຮັດໃຫ້ງ່າຍ.
x=6 x=-1
ເພີ່ມ \frac{5}{2} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.