ປະເມີນ
\frac{x+20}{100-x^{2}}
ບອກຄວາມແຕກຕ່າງ w.r.t. x
\frac{x^{2}+40x+100}{\left(100-x^{2}\right)^{2}}
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2}{10-x}
ຕົວປະກອບ x^{2}-100.
\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ \left(x-10\right)\left(x+10\right) ກັບ 10-x ແມ່ນ \left(x-10\right)\left(x+10\right). ຄູນ \frac{2}{10-x} ໃຫ້ກັບ \frac{-\left(x+10\right)}{-\left(x+10\right)}.
\frac{x+2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)}
ເນື່ອງຈາກ \frac{x}{\left(x-10\right)\left(x+10\right)} ແລະ \frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x-2x-20}{\left(x-10\right)\left(x+10\right)}
ຄູນໃນເສດສ່ວນ x+2\left(-1\right)\left(x+10\right).
\frac{-x-20}{\left(x-10\right)\left(x+10\right)}
ຮວມຂໍ້ກຳນົດໃນ x-2x-20.
\frac{-x-20}{x^{2}-100}
ຂະຫຍາຍ \left(x-10\right)\left(x+10\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2}{10-x})
ຕົວປະກອບ x^{2}-100.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{\left(x-10\right)\left(x+10\right)}+\frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)})
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ \left(x-10\right)\left(x+10\right) ກັບ 10-x ແມ່ນ \left(x-10\right)\left(x+10\right). ຄູນ \frac{2}{10-x} ໃຫ້ກັບ \frac{-\left(x+10\right)}{-\left(x+10\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)})
ເນື່ອງຈາກ \frac{x}{\left(x-10\right)\left(x+10\right)} ແລະ \frac{2\left(-1\right)\left(x+10\right)}{\left(x-10\right)\left(x+10\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-2x-20}{\left(x-10\right)\left(x+10\right)})
ຄູນໃນເສດສ່ວນ x+2\left(-1\right)\left(x+10\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x-20}{\left(x-10\right)\left(x+10\right)})
ຮວມຂໍ້ກຳນົດໃນ x-2x-20.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x-20}{x^{2}-100})
ພິຈາລະນາ \left(x-10\right)\left(x+10\right). ການຄູນສາມາດປ່ຽນເປັນຮາກອື່ນໂດຍໃຊ້ກົດ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 10.
\frac{\left(x^{2}-100\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}-20)-\left(-x^{1}-20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-100)}{\left(x^{2}-100\right)^{2}}
ສຳລັບສອງຟັງຊັນໃດກໍຕາມທີ່ຊອກຫາອະນຸພັນໄດ້, ອະນຸພັນຂອງຜົນຫານຂອງສອງຟັງຊັນແມ່ນຕົວຫານ ຄູນໃຫ້ກັບອະນຸພັນຂອງຕົວເສດ ລົບໃຫ້ກັບຕົວເສດ ຄູນໃຫ້ອະນຸພັນຂອງຕົວຫານ, ທັງໝົດຫານໃຫ້ອະນຸພັນທີ່ຂຶ້ນຮາກແລ້ວ.
\frac{\left(x^{2}-100\right)\left(-1\right)x^{1-1}-\left(-x^{1}-20\right)\times 2x^{2-1}}{\left(x^{2}-100\right)^{2}}
ອະນຸພັນຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຜົນຮວມຂອງອະນຸພັນຂອງພົດມັນ. ອະນຸພັນຂອງພົດແນ່ນອນໃດກໍຕາມແມ່ນ 0. ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
\frac{\left(x^{2}-100\right)\left(-1\right)x^{0}-\left(-x^{1}-20\right)\times 2x^{1}}{\left(x^{2}-100\right)^{2}}
ເຮັດເລກຄະນິດ.
\frac{x^{2}\left(-1\right)x^{0}-100\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-20\times 2x^{1}\right)}{\left(x^{2}-100\right)^{2}}
ຂະຫຍາຍໂດຍໃຊ້ຄຸນສົມບັດທີ່ແບ່ງໄດ້.
\frac{-x^{2}-100\left(-1\right)x^{0}-\left(-2x^{1+1}-20\times 2x^{1}\right)}{\left(x^{2}-100\right)^{2}}
ເພື່ອຄູນກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ເພີ່ມເລກກຳລັງຂອງພວກມັນ.
\frac{-x^{2}+100x^{0}-\left(-2x^{2}-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
ເຮັດເລກຄະນິດ.
\frac{-x^{2}+100x^{0}-\left(-2x^{2}\right)-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
ລຶບວົງເລັບທີ່ບໍ່ຈຳເປັນອອກ.
\frac{\left(-1-\left(-2\right)\right)x^{2}+100x^{0}-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
ຮວມຄຳສັບ.
\frac{x^{2}+100x^{0}-\left(-40x^{1}\right)}{\left(x^{2}-100\right)^{2}}
ລົບ -2 ອອກຈາກ -1.
\frac{x^{2}+100x^{0}-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
ສຳລັບ t ໃດກໍຕາມ, t^{1}=t.
\frac{x^{2}+100\times 1-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
ສຳລັບ t ໃດກໍຕາມຍົກເວັ້ນ 0, t^{0}=1.
\frac{x^{2}+100-\left(-40x\right)}{\left(x^{2}-100\right)^{2}}
ສຳລັບ t ໃດກໍຕາມ, t\times 1=t ແລະ 1t=t.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}