Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ຂະຫຍາຍ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)^{2}}
ຕົວປະກອບ x^{2}-1.
\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ \left(x-1\right)\left(x+1\right) ກັບ \left(x-1\right)^{2} ແມ່ນ \left(x+1\right)\left(x-1\right)^{2}. ຄູນ \frac{x}{\left(x-1\right)\left(x+1\right)} ໃຫ້ກັບ \frac{x-1}{x-1}. ຄູນ \frac{x+1}{\left(x-1\right)^{2}} ໃຫ້ກັບ \frac{x+1}{x+1}.
\frac{x\left(x-1\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}}
ເນື່ອງຈາກ \frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}} ແລະ \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}-x+x^{2}+x+x+1}{\left(x+1\right)\left(x-1\right)^{2}}
ຄູນໃນເສດສ່ວນ x\left(x-1\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+x+1}{\left(x+1\right)\left(x-1\right)^{2}}
ຮວມຂໍ້ກຳນົດໃນ x^{2}-x+x^{2}+x+x+1.
\frac{2x^{2}+x+1}{x^{3}-x^{2}-x+1}
ຂະຫຍາຍ \left(x+1\right)\left(x-1\right)^{2}.
\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)^{2}}
ຕົວປະກອບ x^{2}-1.
\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ \left(x-1\right)\left(x+1\right) ກັບ \left(x-1\right)^{2} ແມ່ນ \left(x+1\right)\left(x-1\right)^{2}. ຄູນ \frac{x}{\left(x-1\right)\left(x+1\right)} ໃຫ້ກັບ \frac{x-1}{x-1}. ຄູນ \frac{x+1}{\left(x-1\right)^{2}} ໃຫ້ກັບ \frac{x+1}{x+1}.
\frac{x\left(x-1\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}}
ເນື່ອງຈາກ \frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^{2}} ແລະ \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^{2}} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}-x+x^{2}+x+x+1}{\left(x+1\right)\left(x-1\right)^{2}}
ຄູນໃນເສດສ່ວນ x\left(x-1\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+x+1}{\left(x+1\right)\left(x-1\right)^{2}}
ຮວມຂໍ້ກຳນົດໃນ x^{2}-x+x^{2}+x+x+1.
\frac{2x^{2}+x+1}{x^{3}-x^{2}-x+1}
ຂະຫຍາຍ \left(x+1\right)\left(x-1\right)^{2}.