ປະເມີນ
y
ບອກຄວາມແຕກຕ່າງ w.r.t. y
1
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}
ຫານ \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} ດ້ວຍ \frac{x}{\left(x+z\right)^{2}-y^{2}} ໂດຍການຄູນ \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} ໂດຍຕົວເລກທີ່ກັບກັນຂອງ \frac{x}{\left(x+z\right)^{2}-y^{2}}.
\frac{x\left(x+y+z\right)\left(x+y-z\right)\left(x-y+z\right)}{x\left(x+y+z\right)\left(x+y-z\right)}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}
ປັດໃຈທີ່ນິພົດບໍ່ມີຢູ່ໃນ \frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}.
\left(x-y+z\right)\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}
ຍົກເລີກ x\left(x+y+z\right)\left(x+y-z\right) ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\left(x-y+z\right)\times \frac{y\left(x-y-z\right)}{\left(x-y+z\right)\left(x-y-z\right)}
ປັດໃຈທີ່ນິພົດບໍ່ມີຢູ່ໃນ \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}.
\left(x-y+z\right)\times \frac{y}{x-y+z}
ຍົກເລີກ x-y-z ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
y
ຍົກເລີກ x-y+z ແລະ x-y+z.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}})
ຫານ \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} ດ້ວຍ \frac{x}{\left(x+z\right)^{2}-y^{2}} ໂດຍການຄູນ \frac{x^{2}+xy-xz}{\left(x+y\right)^{2}-z^{2}} ໂດຍຕົວເລກທີ່ກັບກັນຂອງ \frac{x}{\left(x+z\right)^{2}-y^{2}}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{x\left(x+y+z\right)\left(x+y-z\right)\left(x-y+z\right)}{x\left(x+y+z\right)\left(x+y-z\right)}\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}})
ປັດໃຈທີ່ນິພົດບໍ່ມີຢູ່ໃນ \frac{\left(x^{2}+xy-xz\right)\left(\left(x+z\right)^{2}-y^{2}\right)}{\left(\left(x+y\right)^{2}-z^{2}\right)x}.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(x-y+z\right)\times \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}})
ຍົກເລີກ x\left(x+y+z\right)\left(x+y-z\right) ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(x-y+z\right)\times \frac{y\left(x-y-z\right)}{\left(x-y+z\right)\left(x-y-z\right)})
ປັດໃຈທີ່ນິພົດບໍ່ມີຢູ່ໃນ \frac{xy-y^{2}-yz}{\left(x-y\right)^{2}-z^{2}}.
\frac{\mathrm{d}}{\mathrm{d}y}(\left(x-y+z\right)\times \frac{y}{x-y+z})
ຍົກເລີກ x-y-z ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\frac{\mathrm{d}}{\mathrm{d}y}(y)
ຍົກເລີກ x-y+z ແລະ x-y+z.
y^{1-1}
ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
y^{0}
ລົບ 1 ອອກຈາກ 1.
1
ສຳລັບ t ໃດກໍຕາມຍົກເວັ້ນ 0, t^{0}=1.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}