Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

4\left(x^{2}+2\right)+x+7=12+3\left(x^{2}+1\right)
ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ 12, ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ 3,12,4.
4x^{2}+8+x+7=12+3\left(x^{2}+1\right)
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 4 ດ້ວຍ x^{2}+2.
4x^{2}+15+x=12+3\left(x^{2}+1\right)
ເພີ່ມ 8 ແລະ 7 ເພື່ອໃຫ້ໄດ້ 15.
4x^{2}+15+x=12+3x^{2}+3
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 3 ດ້ວຍ x^{2}+1.
4x^{2}+15+x=15+3x^{2}
ເພີ່ມ 12 ແລະ 3 ເພື່ອໃຫ້ໄດ້ 15.
4x^{2}+15+x-15=3x^{2}
ລົບ 15 ອອກຈາກທັງສອງຂ້າງ.
4x^{2}+x=3x^{2}
ລົບ 15 ອອກຈາກ 15 ເພື່ອໃຫ້ໄດ້ 0.
4x^{2}+x-3x^{2}=0
ລົບ 3x^{2} ອອກຈາກທັງສອງຂ້າງ.
x^{2}+x=0
ຮວມ 4x^{2} ແລະ -3x^{2} ເພື່ອຮັບ x^{2}.
x\left(x+1\right)=0
ຕົວປະກອບຈາກ x.
x=0 x=-1
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x=0 ແລະ x+1=0.
4\left(x^{2}+2\right)+x+7=12+3\left(x^{2}+1\right)
ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ 12, ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ 3,12,4.
4x^{2}+8+x+7=12+3\left(x^{2}+1\right)
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 4 ດ້ວຍ x^{2}+2.
4x^{2}+15+x=12+3\left(x^{2}+1\right)
ເພີ່ມ 8 ແລະ 7 ເພື່ອໃຫ້ໄດ້ 15.
4x^{2}+15+x=12+3x^{2}+3
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 3 ດ້ວຍ x^{2}+1.
4x^{2}+15+x=15+3x^{2}
ເພີ່ມ 12 ແລະ 3 ເພື່ອໃຫ້ໄດ້ 15.
4x^{2}+15+x-15=3x^{2}
ລົບ 15 ອອກຈາກທັງສອງຂ້າງ.
4x^{2}+x=3x^{2}
ລົບ 15 ອອກຈາກ 15 ເພື່ອໃຫ້ໄດ້ 0.
4x^{2}+x-3x^{2}=0
ລົບ 3x^{2} ອອກຈາກທັງສອງຂ້າງ.
x^{2}+x=0
ຮວມ 4x^{2} ແລະ -3x^{2} ເພື່ອຮັບ x^{2}.
x=\frac{-1±\sqrt{1^{2}}}{2}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 1 ສຳລັບ a, 1 ສຳລັບ b ແລະ 0 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2}
ເອົາຮາກຂັ້ນສອງຂອງ 1^{2}.
x=\frac{0}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-1±1}{2} ເມື່ອ ± ບວກ. ເພີ່ມ -1 ໃສ່ 1.
x=0
ຫານ 0 ດ້ວຍ 2.
x=-\frac{2}{2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-1±1}{2} ເມື່ອ ± ເປັນລົບ. ລົບ 1 ອອກຈາກ -1.
x=-1
ຫານ -2 ດ້ວຍ 2.
x=0 x=-1
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
4\left(x^{2}+2\right)+x+7=12+3\left(x^{2}+1\right)
ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ 12, ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ 3,12,4.
4x^{2}+8+x+7=12+3\left(x^{2}+1\right)
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 4 ດ້ວຍ x^{2}+2.
4x^{2}+15+x=12+3\left(x^{2}+1\right)
ເພີ່ມ 8 ແລະ 7 ເພື່ອໃຫ້ໄດ້ 15.
4x^{2}+15+x=12+3x^{2}+3
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 3 ດ້ວຍ x^{2}+1.
4x^{2}+15+x=15+3x^{2}
ເພີ່ມ 12 ແລະ 3 ເພື່ອໃຫ້ໄດ້ 15.
4x^{2}+15+x-15=3x^{2}
ລົບ 15 ອອກຈາກທັງສອງຂ້າງ.
4x^{2}+x=3x^{2}
ລົບ 15 ອອກຈາກ 15 ເພື່ອໃຫ້ໄດ້ 0.
4x^{2}+x-3x^{2}=0
ລົບ 3x^{2} ອອກຈາກທັງສອງຂ້າງ.
x^{2}+x=0
ຮວມ 4x^{2} ແລະ -3x^{2} ເພື່ອຮັບ x^{2}.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
ຫານ 1, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ \frac{1}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ \frac{1}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}+x+\frac{1}{4}=\frac{1}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ \frac{1}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
\left(x+\frac{1}{2}\right)^{2}=\frac{1}{4}
ຕົວປະກອບ x^{2}+x+\frac{1}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x+\frac{1}{2}=\frac{1}{2} x+\frac{1}{2}=-\frac{1}{2}
ເຮັດໃຫ້ງ່າຍ.
x=0 x=-1
ລົບ \frac{1}{2} ອອກຈາກສົມຜົນທັງສອງຂ້າງ.