Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ຂະຫຍາຍ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
ຕົວປະກອບ x^{2}+4x-5. ຕົວປະກອບ x^{2}+6x+5.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ \left(x-1\right)\left(x+5\right) ກັບ \left(x+1\right)\left(x+5\right) ແມ່ນ \left(x-1\right)\left(x+1\right)\left(x+5\right). ຄູນ \frac{x+2}{\left(x-1\right)\left(x+5\right)} ໃຫ້ກັບ \frac{x+1}{x+1}. ຄູນ \frac{3}{\left(x+1\right)\left(x+5\right)} ໃຫ້ກັບ \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
ເນື່ອງຈາກ \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} ແລະ \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
ຄູນໃນເສດສ່ວນ \left(x+2\right)\left(x+1\right)-3\left(x-1\right).
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
ຮວມຂໍ້ກຳນົດໃນ x^{2}+x+2x+2-3x+3.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
ຂະຫຍາຍ \left(x-1\right)\left(x+1\right)\left(x+5\right).
\frac{x+2}{\left(x-1\right)\left(x+5\right)}-\frac{3}{\left(x+1\right)\left(x+5\right)}
ຕົວປະກອບ x^{2}+4x-5. ຕົວປະກອບ x^{2}+6x+5.
\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}-\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ \left(x-1\right)\left(x+5\right) ກັບ \left(x+1\right)\left(x+5\right) ແມ່ນ \left(x-1\right)\left(x+1\right)\left(x+5\right). ຄູນ \frac{x+2}{\left(x-1\right)\left(x+5\right)} ໃຫ້ກັບ \frac{x+1}{x+1}. ຄູນ \frac{3}{\left(x+1\right)\left(x+5\right)} ໃຫ້ກັບ \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x+1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
ເນື່ອງຈາກ \frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} ແລະ \frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x+5\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}+x+2x+2-3x+3}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
ຄູນໃນເສດສ່ວນ \left(x+2\right)\left(x+1\right)-3\left(x-1\right).
\frac{x^{2}+5}{\left(x-1\right)\left(x+1\right)\left(x+5\right)}
ຮວມຂໍ້ກຳນົດໃນ x^{2}+x+2x+2-3x+3.
\frac{x^{2}+5}{x^{3}+5x^{2}-x-5}
ຂະຫຍາຍ \left(x-1\right)\left(x+1\right)\left(x+5\right).