Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ຂະຫຍາຍ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x+1 ກັບ x+2 ແມ່ນ \left(x+1\right)\left(x+2\right). ຄູນ \frac{x+2}{x+1} ໃຫ້ກັບ \frac{x+2}{x+2}. ຄູນ \frac{x+1}{x+2} ໃຫ້ກັບ \frac{x+1}{x+1}.
\frac{\left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
ເນື່ອງຈາກ \frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} ແລະ \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}+2x+2x+4+x^{2}+x+x+1}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
ຄູນໃນເສດສ່ວນ \left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
ຮວມຂໍ້ກຳນົດໃນ x^{2}+2x+2x+4+x^{2}+x+x+1.
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ \left(x+1\right)\left(x+2\right) ກັບ x+2 ແມ່ນ \left(x+1\right)\left(x+2\right). ຄູນ \frac{x+5}{x+2} ໃຫ້ກັບ \frac{x+1}{x+1}.
\frac{2x^{2}+6x+5-\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
ເນື່ອງຈາກ \frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)} ແລະ \frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{2x^{2}+6x+5-x^{2}-x-5x-5}{\left(x+1\right)\left(x+2\right)}
ຄູນໃນເສດສ່ວນ 2x^{2}+6x+5-\left(x+5\right)\left(x+1\right).
\frac{x^{2}}{\left(x+1\right)\left(x+2\right)}
ຮວມຂໍ້ກຳນົດໃນ 2x^{2}+6x+5-x^{2}-x-5x-5.
\frac{x^{2}}{x^{2}+3x+2}
ຂະຫຍາຍ \left(x+1\right)\left(x+2\right).
\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x+1 ກັບ x+2 ແມ່ນ \left(x+1\right)\left(x+2\right). ຄູນ \frac{x+2}{x+1} ໃຫ້ກັບ \frac{x+2}{x+2}. ຄູນ \frac{x+1}{x+2} ໃຫ້ກັບ \frac{x+1}{x+1}.
\frac{\left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
ເນື່ອງຈາກ \frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} ແລະ \frac{\left(x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x^{2}+2x+2x+4+x^{2}+x+x+1}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
ຄູນໃນເສດສ່ວນ \left(x+2\right)\left(x+2\right)+\left(x+1\right)\left(x+1\right).
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{x+5}{x+2}
ຮວມຂໍ້ກຳນົດໃນ x^{2}+2x+2x+4+x^{2}+x+x+1.
\frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ \left(x+1\right)\left(x+2\right) ກັບ x+2 ແມ່ນ \left(x+1\right)\left(x+2\right). ຄູນ \frac{x+5}{x+2} ໃຫ້ກັບ \frac{x+1}{x+1}.
\frac{2x^{2}+6x+5-\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}
ເນື່ອງຈາກ \frac{2x^{2}+6x+5}{\left(x+1\right)\left(x+2\right)} ແລະ \frac{\left(x+5\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{2x^{2}+6x+5-x^{2}-x-5x-5}{\left(x+1\right)\left(x+2\right)}
ຄູນໃນເສດສ່ວນ 2x^{2}+6x+5-\left(x+5\right)\left(x+1\right).
\frac{x^{2}}{\left(x+1\right)\left(x+2\right)}
ຮວມຂໍ້ກຳນົດໃນ 2x^{2}+6x+5-x^{2}-x-5x-5.
\frac{x^{2}}{x^{2}+3x+2}
ຂະຫຍາຍ \left(x+1\right)\left(x+2\right).