ປະເມີນ
\frac{u\left(2-u\right)}{1-u^{2}}
ຕົວປະກອບ
\frac{u\left(2-u\right)}{1-u^{2}}
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\frac{u}{1+u}+\frac{u}{\left(u-1\right)\left(-u-1\right)}
ຕົວປະກອບ 1-u^{2}.
\frac{u\left(u-1\right)}{\left(u-1\right)\left(u+1\right)}+\frac{-u}{\left(u-1\right)\left(u+1\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ 1+u ກັບ \left(u-1\right)\left(-u-1\right) ແມ່ນ \left(u-1\right)\left(u+1\right). ຄູນ \frac{u}{1+u} ໃຫ້ກັບ \frac{u-1}{u-1}. ຄູນ \frac{u}{\left(u-1\right)\left(-u-1\right)} ໃຫ້ກັບ \frac{-1}{-1}.
\frac{u\left(u-1\right)-u}{\left(u-1\right)\left(u+1\right)}
ເນື່ອງຈາກ \frac{u\left(u-1\right)}{\left(u-1\right)\left(u+1\right)} ແລະ \frac{-u}{\left(u-1\right)\left(u+1\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{u^{2}-u-u}{\left(u-1\right)\left(u+1\right)}
ຄູນໃນເສດສ່ວນ u\left(u-1\right)-u.
\frac{u^{2}-2u}{\left(u-1\right)\left(u+1\right)}
ຮວມຂໍ້ກຳນົດໃນ u^{2}-u-u.
\frac{u^{2}-2u}{u^{2}-1}
ຂະຫຍາຍ \left(u-1\right)\left(u+1\right).
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}