Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ບອກຄວາມແຕກຕ່າງ w.r.t. p
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{p^{2}}{p-2}+\frac{4\left(-1\right)}{p-2}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ p-2 ກັບ 2-p ແມ່ນ p-2. ຄູນ \frac{4}{2-p} ໃຫ້ກັບ \frac{-1}{-1}.
\frac{p^{2}+4\left(-1\right)}{p-2}
ເນື່ອງຈາກ \frac{p^{2}}{p-2} ແລະ \frac{4\left(-1\right)}{p-2} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{p^{2}-4}{p-2}
ຄູນໃນເສດສ່ວນ p^{2}+4\left(-1\right).
\frac{\left(p-2\right)\left(p+2\right)}{p-2}
ປັດໃຈທີ່ນິພົດບໍ່ມີຢູ່ໃນ \frac{p^{2}-4}{p-2}.
p+2
ຍົກເລີກ p-2 ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{p^{2}}{p-2}+\frac{4\left(-1\right)}{p-2})
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ p-2 ກັບ 2-p ແມ່ນ p-2. ຄູນ \frac{4}{2-p} ໃຫ້ກັບ \frac{-1}{-1}.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{p^{2}+4\left(-1\right)}{p-2})
ເນື່ອງຈາກ \frac{p^{2}}{p-2} ແລະ \frac{4\left(-1\right)}{p-2} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{p^{2}-4}{p-2})
ຄູນໃນເສດສ່ວນ p^{2}+4\left(-1\right).
\frac{\mathrm{d}}{\mathrm{d}p}(\frac{\left(p-2\right)\left(p+2\right)}{p-2})
ປັດໃຈທີ່ນິພົດບໍ່ມີຢູ່ໃນ \frac{p^{2}-4}{p-2}.
\frac{\mathrm{d}}{\mathrm{d}p}(p+2)
ຍົກເລີກ p-2 ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
p^{1-1}
ອະນຸພັນຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຜົນຮວມຂອງອະນຸພັນຂອງພົດມັນ. ອະນຸພັນຂອງພົດແນ່ນອນໃດກໍຕາມແມ່ນ 0. ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
p^{0}
ລົບ 1 ອອກຈາກ 1.
1
ສຳລັບ t ໃດກໍຕາມຍົກເວັ້ນ 0, t^{0}=1.