Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ຂະຫຍາຍ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{\left(n+f\right)\left(n+1\right)}{\left(n-1\right)\left(n+1\right)}-\frac{\left(n-f\right)\left(n-1\right)}{\left(n-1\right)\left(n+1\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ n-1 ກັບ n+1 ແມ່ນ \left(n-1\right)\left(n+1\right). ຄູນ \frac{n+f}{n-1} ໃຫ້ກັບ \frac{n+1}{n+1}. ຄູນ \frac{n-f}{n+1} ໃຫ້ກັບ \frac{n-1}{n-1}.
\frac{\left(n+f\right)\left(n+1\right)-\left(n-f\right)\left(n-1\right)}{\left(n-1\right)\left(n+1\right)}
ເນື່ອງຈາກ \frac{\left(n+f\right)\left(n+1\right)}{\left(n-1\right)\left(n+1\right)} ແລະ \frac{\left(n-f\right)\left(n-1\right)}{\left(n-1\right)\left(n+1\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{n^{2}+n+fn+f-n^{2}+n+fn-f}{\left(n-1\right)\left(n+1\right)}
ຄູນໃນເສດສ່ວນ \left(n+f\right)\left(n+1\right)-\left(n-f\right)\left(n-1\right).
\frac{2n+2fn}{\left(n-1\right)\left(n+1\right)}
ຮວມຂໍ້ກຳນົດໃນ n^{2}+n+fn+f-n^{2}+n+fn-f.
\frac{2n+2fn}{n^{2}-1}
ຂະຫຍາຍ \left(n-1\right)\left(n+1\right).
\frac{\left(n+f\right)\left(n+1\right)}{\left(n-1\right)\left(n+1\right)}-\frac{\left(n-f\right)\left(n-1\right)}{\left(n-1\right)\left(n+1\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ n-1 ກັບ n+1 ແມ່ນ \left(n-1\right)\left(n+1\right). ຄູນ \frac{n+f}{n-1} ໃຫ້ກັບ \frac{n+1}{n+1}. ຄູນ \frac{n-f}{n+1} ໃຫ້ກັບ \frac{n-1}{n-1}.
\frac{\left(n+f\right)\left(n+1\right)-\left(n-f\right)\left(n-1\right)}{\left(n-1\right)\left(n+1\right)}
ເນື່ອງຈາກ \frac{\left(n+f\right)\left(n+1\right)}{\left(n-1\right)\left(n+1\right)} ແລະ \frac{\left(n-f\right)\left(n-1\right)}{\left(n-1\right)\left(n+1\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{n^{2}+n+fn+f-n^{2}+n+fn-f}{\left(n-1\right)\left(n+1\right)}
ຄູນໃນເສດສ່ວນ \left(n+f\right)\left(n+1\right)-\left(n-f\right)\left(n-1\right).
\frac{2n+2fn}{\left(n-1\right)\left(n+1\right)}
ຮວມຂໍ້ກຳນົດໃນ n^{2}+n+fn+f-n^{2}+n+fn-f.
\frac{2n+2fn}{n^{2}-1}
ຂະຫຍາຍ \left(n-1\right)\left(n+1\right).