ແກ້ສຳລັບ C
C=\frac{2Pn_{2}}{3\left(n+12\right)}
n\neq -12\text{ and }n_{2}\neq 0\text{ and }P\neq 0
ແກ້ສຳລັບ P
P=\frac{3C\left(n+12\right)}{2n_{2}}
n_{2}\neq 0\text{ and }C\neq 0\text{ and }n\neq -12
ແບ່ງປັນ
ສໍາເນົາຄລິບ
2Pn_{2}=3C\left(n+12\right)
C ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ 0 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ 2C\left(n+12\right), ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ C\left(n+12\right),2.
2Pn_{2}=3Cn+36C
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 3C ດ້ວຍ n+12.
3Cn+36C=2Pn_{2}
ສະຫຼັບຂ້າງເພື່ອໃຫ້ພົດຕົວແປທັງໝົດຢູ່ຂ້າງຊ້າຍຂອງເຄື່ອງໝາຍເທົ່າກັບ.
\left(3n+36\right)C=2Pn_{2}
ຮວມທຸກຄຳສັບທີ່ມີ C.
\frac{\left(3n+36\right)C}{3n+36}=\frac{2Pn_{2}}{3n+36}
ຫານທັງສອງຂ້າງດ້ວຍ 3n+36.
C=\frac{2Pn_{2}}{3n+36}
ການຫານດ້ວຍ 3n+36 ຈະຍົກເລີກການຄູນດ້ວຍ 3n+36.
C=\frac{2Pn_{2}}{3\left(n+12\right)}
ຫານ 2Pn_{2} ດ້ວຍ 3n+36.
C=\frac{2Pn_{2}}{3\left(n+12\right)}\text{, }C\neq 0
C ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບ 0 ໄດ້.
2Pn_{2}=3C\left(n+12\right)
ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ 2C\left(n+12\right), ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ C\left(n+12\right),2.
2Pn_{2}=3Cn+36C
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ 3C ດ້ວຍ n+12.
2n_{2}P=3Cn+36C
ສົມຜົນຢູ່ໃນຮູບແບບມາດຕະຖານ.
\frac{2n_{2}P}{2n_{2}}=\frac{3C\left(n+12\right)}{2n_{2}}
ຫານທັງສອງຂ້າງດ້ວຍ 2n_{2}.
P=\frac{3C\left(n+12\right)}{2n_{2}}
ການຫານດ້ວຍ 2n_{2} ຈະຍົກເລີກການຄູນດ້ວຍ 2n_{2}.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}