ແກ້ສຳລັບ x
x=4
x=0
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
4x-1=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ -1 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ x+1.
4x-1=x^{2}+x+\left(x+1\right)\left(-1\right)
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x+1 ດ້ວຍ x.
4x-1=x^{2}+x-x-1
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x+1 ດ້ວຍ -1.
4x-1=x^{2}-1
ຮວມ x ແລະ -x ເພື່ອຮັບ 0.
4x-1-x^{2}=-1
ລົບ x^{2} ອອກຈາກທັງສອງຂ້າງ.
4x-1-x^{2}+1=0
ເພີ່ມ 1 ໃສ່ທັງສອງດ້ານ.
4x-x^{2}=0
ເພີ່ມ -1 ແລະ 1 ເພື່ອໃຫ້ໄດ້ 0.
-x^{2}+4x=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-4±\sqrt{4^{2}}}{2\left(-1\right)}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ -1 ສຳລັບ a, 4 ສຳລັບ b ແລະ 0 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±4}{2\left(-1\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 4^{2}.
x=\frac{-4±4}{-2}
ຄູນ 2 ໃຫ້ກັບ -1.
x=\frac{0}{-2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-4±4}{-2} ເມື່ອ ± ບວກ. ເພີ່ມ -4 ໃສ່ 4.
x=0
ຫານ 0 ດ້ວຍ -2.
x=-\frac{8}{-2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-4±4}{-2} ເມື່ອ ± ເປັນລົບ. ລົບ 4 ອອກຈາກ -4.
x=4
ຫານ -8 ດ້ວຍ -2.
x=0 x=4
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
4x-1=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ -1 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ x+1.
4x-1=x^{2}+x+\left(x+1\right)\left(-1\right)
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x+1 ດ້ວຍ x.
4x-1=x^{2}+x-x-1
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x+1 ດ້ວຍ -1.
4x-1=x^{2}-1
ຮວມ x ແລະ -x ເພື່ອຮັບ 0.
4x-1-x^{2}=-1
ລົບ x^{2} ອອກຈາກທັງສອງຂ້າງ.
4x-x^{2}=-1+1
ເພີ່ມ 1 ໃສ່ທັງສອງດ້ານ.
4x-x^{2}=0
ເພີ່ມ -1 ແລະ 1 ເພື່ອໃຫ້ໄດ້ 0.
-x^{2}+4x=0
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
\frac{-x^{2}+4x}{-1}=\frac{0}{-1}
ຫານທັງສອງຂ້າງດ້ວຍ -1.
x^{2}+\frac{4}{-1}x=\frac{0}{-1}
ການຫານດ້ວຍ -1 ຈະຍົກເລີກການຄູນດ້ວຍ -1.
x^{2}-4x=\frac{0}{-1}
ຫານ 4 ດ້ວຍ -1.
x^{2}-4x=0
ຫານ 0 ດ້ວຍ -1.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
ຫານ -4, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -2. ຈາກນັ້ນເພີ່ມຮາກຂອງ -2 ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-4x+4=4
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -2.
\left(x-2\right)^{2}=4
ຕົວປະກອບ x^{2}-4x+4. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-2=2 x-2=-2
ເຮັດໃຫ້ງ່າຍ.
x=4 x=0
ເພີ່ມ 2 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}