Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ບອກຄວາມແຕກຕ່າງ w.r.t. r
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)}+\frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ 2r+5 ກັບ 5r-2 ແມ່ນ \left(5r-2\right)\left(2r+5\right). ຄູນ \frac{4}{2r+5} ໃຫ້ກັບ \frac{5r-2}{5r-2}. ຄູນ \frac{3}{5r-2} ໃຫ້ກັບ \frac{2r+5}{2r+5}.
\frac{4\left(5r-2\right)+3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)}
ເນື່ອງຈາກ \frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)} ແລະ \frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{20r-8+6r+15}{\left(5r-2\right)\left(2r+5\right)}
ຄູນໃນເສດສ່ວນ 4\left(5r-2\right)+3\left(2r+5\right).
\frac{26r+7}{\left(5r-2\right)\left(2r+5\right)}
ຮວມຂໍ້ກຳນົດໃນ 20r-8+6r+15.
\frac{26r+7}{10r^{2}+21r-10}
ຂະຫຍາຍ \left(5r-2\right)\left(2r+5\right).
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)}+\frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)})
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ 2r+5 ກັບ 5r-2 ແມ່ນ \left(5r-2\right)\left(2r+5\right). ຄູນ \frac{4}{2r+5} ໃຫ້ກັບ \frac{5r-2}{5r-2}. ຄູນ \frac{3}{5r-2} ໃຫ້ກັບ \frac{2r+5}{2r+5}.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{4\left(5r-2\right)+3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)})
ເນື່ອງຈາກ \frac{4\left(5r-2\right)}{\left(5r-2\right)\left(2r+5\right)} ແລະ \frac{3\left(2r+5\right)}{\left(5r-2\right)\left(2r+5\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{20r-8+6r+15}{\left(5r-2\right)\left(2r+5\right)})
ຄູນໃນເສດສ່ວນ 4\left(5r-2\right)+3\left(2r+5\right).
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{26r+7}{\left(5r-2\right)\left(2r+5\right)})
ຮວມຂໍ້ກຳນົດໃນ 20r-8+6r+15.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{26r+7}{10r^{2}+25r-4r-10})
ນຳໃຊ້ຄຸນສົມບັດການແຈກຢາຍໂດຍການຄູນແຕ່ລະ 5r-2 ດ້ວຍ 2r+5.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{26r+7}{10r^{2}+21r-10})
ຮວມ 25r ແລະ -4r ເພື່ອຮັບ 21r.
\frac{\left(10r^{2}+21r^{1}-10\right)\frac{\mathrm{d}}{\mathrm{d}r}(26r^{1}+7)-\left(26r^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}r}(10r^{2}+21r^{1}-10)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ສຳລັບສອງຟັງຊັນໃດກໍຕາມທີ່ຊອກຫາອະນຸພັນໄດ້, ອະນຸພັນຂອງຜົນຫານຂອງສອງຟັງຊັນແມ່ນຕົວຫານ ຄູນໃຫ້ກັບອະນຸພັນຂອງຕົວເສດ ລົບໃຫ້ກັບຕົວເສດ ຄູນໃຫ້ອະນຸພັນຂອງຕົວຫານ, ທັງໝົດຫານໃຫ້ອະນຸພັນທີ່ຂຶ້ນຮາກແລ້ວ.
\frac{\left(10r^{2}+21r^{1}-10\right)\times 26r^{1-1}-\left(26r^{1}+7\right)\left(2\times 10r^{2-1}+21r^{1-1}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ອະນຸພັນຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຜົນຮວມຂອງອະນຸພັນຂອງພົດມັນ. ອະນຸພັນຂອງພົດແນ່ນອນໃດກໍຕາມແມ່ນ 0. ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
\frac{\left(10r^{2}+21r^{1}-10\right)\times 26r^{0}-\left(26r^{1}+7\right)\left(20r^{1}+21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ເຮັດໃຫ້ງ່າຍ.
\frac{10r^{2}\times 26r^{0}+21r^{1}\times 26r^{0}-10\times 26r^{0}-\left(26r^{1}+7\right)\left(20r^{1}+21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ຄູນ 10r^{2}+21r^{1}-10 ໃຫ້ກັບ 26r^{0}.
\frac{10r^{2}\times 26r^{0}+21r^{1}\times 26r^{0}-10\times 26r^{0}-\left(26r^{1}\times 20r^{1}+26r^{1}\times 21r^{0}+7\times 20r^{1}+7\times 21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ຄູນ 26r^{1}+7 ໃຫ້ກັບ 20r^{1}+21r^{0}.
\frac{10\times 26r^{2}+21\times 26r^{1}-10\times 26r^{0}-\left(26\times 20r^{1+1}+26\times 21r^{1}+7\times 20r^{1}+7\times 21r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ເພື່ອຄູນກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ເພີ່ມເລກກຳລັງຂອງພວກມັນ.
\frac{260r^{2}+546r^{1}-260r^{0}-\left(520r^{2}+546r^{1}+140r^{1}+147r^{0}\right)}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ເຮັດໃຫ້ງ່າຍ.
\frac{-260r^{2}-140r^{1}-407r^{0}}{\left(10r^{2}+21r^{1}-10\right)^{2}}
ຮວມຄຳສັບ.
\frac{-260r^{2}-140r-407r^{0}}{\left(10r^{2}+21r-10\right)^{2}}
ສຳລັບ t ໃດກໍຕາມ, t^{1}=t.
\frac{-260r^{2}-140r-407}{\left(10r^{2}+21r-10\right)^{2}}
ສຳລັບ t ໃດກໍຕາມຍົກເວັ້ນ 0, t^{0}=1.