Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{4\left(\sqrt{2}+6\right)}{\left(\sqrt{2}-6\right)\left(\sqrt{2}+6\right)}
ໃຊ້ເຫດຜົນຕັດສິນຕົວຫານຂອງ \frac{4}{\sqrt{2}-6} ໂດຍການຫານຕົວເສດ ແລະ ຕົວຫານໂດຍ \sqrt{2}+6.
\frac{4\left(\sqrt{2}+6\right)}{\left(\sqrt{2}\right)^{2}-6^{2}}
ພິຈາລະນາ \left(\sqrt{2}-6\right)\left(\sqrt{2}+6\right). ການຄູນສາມາດປ່ຽນເປັນຮາກອື່ນໂດຍໃຊ້ກົດ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{2}+6\right)}{2-36}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ \sqrt{2}. ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 6.
\frac{4\left(\sqrt{2}+6\right)}{-34}
ລົບ 36 ອອກຈາກ 2 ເພື່ອໃຫ້ໄດ້ -34.
-\frac{2}{17}\left(\sqrt{2}+6\right)
ຫານ 4\left(\sqrt{2}+6\right) ດ້ວຍ -34 ເພື່ອໄດ້ -\frac{2}{17}\left(\sqrt{2}+6\right).
-\frac{2}{17}\sqrt{2}-\frac{2}{17}\times 6
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ -\frac{2}{17} ດ້ວຍ \sqrt{2}+6.
-\frac{2}{17}\sqrt{2}+\frac{-2\times 6}{17}
ສະແດງ -\frac{2}{17}\times 6 ເປັນໜຶ່ງເສດສ່ວນ.
-\frac{2}{17}\sqrt{2}+\frac{-12}{17}
ຄູນ -2 ກັບ 6 ເພື່ອໃຫ້ໄດ້ -12.
-\frac{2}{17}\sqrt{2}-\frac{12}{17}
ເສດ \frac{-12}{17} ສາມາດຂຽນຄືນເປັນ -\frac{12}{17} ໄດ້ໂດຍການສະກັດເຄື່ອງໝາຍລົບອອກ.