ປະເມີນ
4\sqrt{6}\approx 9,797958971
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
ໃຊ້ເຫດຜົນຕັດສິນຕົວຫານຂອງ \frac{4\sqrt{3}}{2-\sqrt{2}} ໂດຍການຫານຕົວເສດ ແລະ ຕົວຫານໂດຍ 2+\sqrt{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
ພິຈາລະນາ \left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right). ການຄູນສາມາດປ່ຽນເປັນຮາກອື່ນໂດຍໃຊ້ກົດ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{4-2}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 2. ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ \sqrt{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
ລົບ 2 ອອກຈາກ 4 ເພື່ອໃຫ້ໄດ້ 2.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30}{4\sqrt{3}-3\sqrt{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
ຕົວປະກອບ 18=3^{2}\times 2. ຂຽນຮາກຂັ້ນສອງຂອງຜົນຄູນ \sqrt{3^{2}\times 2} ເປັນຜົນຄູນຂອງຮາກຂັ້ນສອງ \sqrt{3^{2}}\sqrt{2}. ເອົາຮາກຂັ້ນສອງຂອງ 3^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{\left(4\sqrt{3}-3\sqrt{2}\right)\left(4\sqrt{3}+3\sqrt{2}\right)}-\frac{\sqrt{18}}{3-\sqrt{12}}
ໃຊ້ເຫດຜົນຕັດສິນຕົວຫານຂອງ \frac{30}{4\sqrt{3}-3\sqrt{2}} ໂດຍການຫານຕົວເສດ ແລະ ຕົວຫານໂດຍ 4\sqrt{3}+3\sqrt{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{\left(4\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
ພິຈາລະນາ \left(4\sqrt{3}-3\sqrt{2}\right)\left(4\sqrt{3}+3\sqrt{2}\right). ການຄູນສາມາດປ່ຽນເປັນຮາກອື່ນໂດຍໃຊ້ກົດ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{4^{2}\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
ຂະຫຍາຍ \left(4\sqrt{3}\right)^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{16\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
ຄຳນວນ 4 ກຳລັງ 2 ແລະ ໄດ້ 16.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{16\times 3-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
ຮາກຂອງ \sqrt{3} ແມ່ນ 3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
ຄູນ 16 ກັບ 3 ເພື່ອໃຫ້ໄດ້ 48.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-\left(-3\right)^{2}\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
ຂະຫຍາຍ \left(-3\sqrt{2}\right)^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-9\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
ຄຳນວນ -3 ກຳລັງ 2 ແລະ ໄດ້ 9.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-9\times 2}-\frac{\sqrt{18}}{3-\sqrt{12}}
ຮາກຂອງ \sqrt{2} ແມ່ນ 2.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-18}-\frac{\sqrt{18}}{3-\sqrt{12}}
ຄູນ 9 ກັບ 2 ເພື່ອໃຫ້ໄດ້ 18.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{30}-\frac{\sqrt{18}}{3-\sqrt{12}}
ລົບ 18 ອອກຈາກ 48 ເພື່ອໃຫ້ໄດ້ 30.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\left(4\sqrt{3}+3\sqrt{2}\right)-\frac{\sqrt{18}}{3-\sqrt{12}}
ຍົກເລີກ 30 ແລະ 30.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{\sqrt{18}}{3-\sqrt{12}}
ຊອກຫາຄຳກົງກັນຂ້າມຂອງ 4\sqrt{3}+3\sqrt{2}, ຊອກຫາຄຳກົງກັນຂ້າມຂອງແຕ່ລະຄຳ.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}}{3-\sqrt{12}}
ຕົວປະກອບ 18=3^{2}\times 2. ຂຽນຮາກຂັ້ນສອງຂອງຜົນຄູນ \sqrt{3^{2}\times 2} ເປັນຜົນຄູນຂອງຮາກຂັ້ນສອງ \sqrt{3^{2}}\sqrt{2}. ເອົາຮາກຂັ້ນສອງຂອງ 3^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}}{3-2\sqrt{3}}
ຕົວປະກອບ 12=2^{2}\times 3. ຂຽນຮາກຂັ້ນສອງຂອງຜົນຄູນ \sqrt{2^{2}\times 3} ເປັນຜົນຄູນຂອງຮາກຂັ້ນສອງ \sqrt{2^{2}}\sqrt{3}. ເອົາຮາກຂັ້ນສອງຂອງ 2^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{\left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right)}
ໃຊ້ເຫດຜົນຕັດສິນຕົວຫານຂອງ \frac{3\sqrt{2}}{3-2\sqrt{3}} ໂດຍການຫານຕົວເສດ ແລະ ຕົວຫານໂດຍ 3+2\sqrt{3}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{3^{2}-\left(-2\sqrt{3}\right)^{2}}
ພິຈາລະນາ \left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right). ການຄູນສາມາດປ່ຽນເປັນຮາກອື່ນໂດຍໃຊ້ກົດ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-\left(-2\sqrt{3}\right)^{2}}
ຄຳນວນ 3 ກຳລັງ 2 ແລະ ໄດ້ 9.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}
ຂະຫຍາຍ \left(-2\sqrt{3}\right)^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-4\left(\sqrt{3}\right)^{2}}
ຄຳນວນ -2 ກຳລັງ 2 ແລະ ໄດ້ 4.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-4\times 3}
ຮາກຂອງ \sqrt{3} ແມ່ນ 3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-12}
ຄູນ 4 ກັບ 3 ເພື່ອໃຫ້ໄດ້ 12.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{-3}
ລົບ 12 ອອກຈາກ 9 ເພື່ອໃຫ້ໄດ້ -3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\left(-\sqrt{2}\left(3+2\sqrt{3}\right)\right)
ຍົກເລີກ -3 ແລະ -3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
ຈຳນວນກົງກັນຂ້າມຂອງ -\sqrt{2}\left(3+2\sqrt{3}\right) ແມ່ນ \sqrt{2}\left(3+2\sqrt{3}\right).
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}+\frac{2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຄູນ -4\sqrt{3}-3\sqrt{2} ໃຫ້ກັບ \frac{2}{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)+2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
ເນື່ອງຈາກ \frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2} ແລະ \frac{2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{8\sqrt{3}+4\sqrt{6}-8\sqrt{3}-6\sqrt{2}}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
ຄູນໃນເສດສ່ວນ 4\sqrt{3}\left(2+\sqrt{2}\right)+2\left(-4\sqrt{3}-3\sqrt{2}\right).
\frac{4\sqrt{6}-6\sqrt{2}}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
ຄຳນວນໃນ 8\sqrt{3}+4\sqrt{6}-8\sqrt{3}-6\sqrt{2}.
2\sqrt{6}-3\sqrt{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
ຫານແຕ່ລະຄ່າຂອງ 4\sqrt{6}-6\sqrt{2} ດ້ວຍ 2 ເພື່ອໄດ້ 2\sqrt{6}-3\sqrt{2}.
2\sqrt{6}-3\sqrt{2}+3\sqrt{2}+2\sqrt{2}\sqrt{3}
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ \sqrt{2} ດ້ວຍ 3+2\sqrt{3}.
2\sqrt{6}-3\sqrt{2}+3\sqrt{2}+2\sqrt{6}
ເພື່ອຄູນ \sqrt{2} ແລະ \sqrt{3}, ໃຫ້ຄູນຈຳນວນພາຍໃຕ້ຮາກຂັ້ນສູງ.
2\sqrt{6}+2\sqrt{6}
ຮວມ -3\sqrt{2} ແລະ 3\sqrt{2} ເພື່ອຮັບ 0.
4\sqrt{6}
ຮວມ 2\sqrt{6} ແລະ 2\sqrt{6} ເພື່ອຮັບ 4\sqrt{6}.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}