Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

x\times 3x-\left(x-1\right)\times 4=3
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບຄ່າໃດຂອງ 0,1 ໄດ້ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ x\left(x-1\right), ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ x-1,x,x^{2}-x.
x^{2}\times 3-\left(x-1\right)\times 4=3
ຄູນ x ກັບ x ເພື່ອໃຫ້ໄດ້ x^{2}.
x^{2}\times 3-\left(4x-4\right)=3
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x-1 ດ້ວຍ 4.
x^{2}\times 3-4x+4=3
ຊອກຫາຄຳກົງກັນຂ້າມຂອງ 4x-4, ຊອກຫາຄຳກົງກັນຂ້າມຂອງແຕ່ລະຄຳ.
x^{2}\times 3-4x+4-3=0
ລົບ 3 ອອກຈາກທັງສອງຂ້າງ.
x^{2}\times 3-4x+1=0
ລົບ 3 ອອກຈາກ 4 ເພື່ອໃຫ້ໄດ້ 1.
a+b=-4 ab=3\times 1=3
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ 3x^{2}+ax+bx+1. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
a=-3 b=-1
ເນື່ອງຈາກ ab ເປັນຄ່າບວກ, a ແລະ b ຈຶ່ງມີສັນຍາລັກດຽວກັນ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງເປັນຄ່າລົບທັງຄູ່. ຄູ່ດັ່ງກ່າວເປັນທາງອອກລະບົບ.
\left(3x^{2}-3x\right)+\left(-x+1\right)
ຂຽນ 3x^{2}-4x+1 ຄືນໃໝ່ເປັນ \left(3x^{2}-3x\right)+\left(-x+1\right).
3x\left(x-1\right)-\left(x-1\right)
ຕົວຫານ 3x ໃນຕອນທຳອິດ ແລະ -1 ໃນກຸ່ມທີສອງ.
\left(x-1\right)\left(3x-1\right)
ແຍກຄຳທົ່ວໄປ x-1 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=1 x=\frac{1}{3}
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-1=0 ແລະ 3x-1=0.
x=\frac{1}{3}
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບ 1 ໄດ້.
x\times 3x-\left(x-1\right)\times 4=3
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບຄ່າໃດຂອງ 0,1 ໄດ້ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ x\left(x-1\right), ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ x-1,x,x^{2}-x.
x^{2}\times 3-\left(x-1\right)\times 4=3
ຄູນ x ກັບ x ເພື່ອໃຫ້ໄດ້ x^{2}.
x^{2}\times 3-\left(4x-4\right)=3
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x-1 ດ້ວຍ 4.
x^{2}\times 3-4x+4=3
ຊອກຫາຄຳກົງກັນຂ້າມຂອງ 4x-4, ຊອກຫາຄຳກົງກັນຂ້າມຂອງແຕ່ລະຄຳ.
x^{2}\times 3-4x+4-3=0
ລົບ 3 ອອກຈາກທັງສອງຂ້າງ.
x^{2}\times 3-4x+1=0
ລົບ 3 ອອກຈາກ 4 ເພື່ອໃຫ້ໄດ້ 1.
3x^{2}-4x+1=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2\times 3}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ 3 ສຳລັບ a, -4 ສຳລັບ b ແລະ 1 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2\times 3}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -4.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2\times 3}
ຄູນ -4 ໃຫ້ກັບ 3.
x=\frac{-\left(-4\right)±\sqrt{4}}{2\times 3}
ເພີ່ມ 16 ໃສ່ -12.
x=\frac{-\left(-4\right)±2}{2\times 3}
ເອົາຮາກຂັ້ນສອງຂອງ 4.
x=\frac{4±2}{2\times 3}
ຈຳນວນກົງກັນຂ້າມຂອງ -4 ແມ່ນ 4.
x=\frac{4±2}{6}
ຄູນ 2 ໃຫ້ກັບ 3.
x=\frac{6}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{4±2}{6} ເມື່ອ ± ບວກ. ເພີ່ມ 4 ໃສ່ 2.
x=1
ຫານ 6 ດ້ວຍ 6.
x=\frac{2}{6}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{4±2}{6} ເມື່ອ ± ເປັນລົບ. ລົບ 2 ອອກຈາກ 4.
x=\frac{1}{3}
ຫຼຸດເສດສ່ວນ \frac{2}{6} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 2.
x=1 x=\frac{1}{3}
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
x=\frac{1}{3}
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບ 1 ໄດ້.
x\times 3x-\left(x-1\right)\times 4=3
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບຄ່າໃດຂອງ 0,1 ໄດ້ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ x\left(x-1\right), ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ x-1,x,x^{2}-x.
x^{2}\times 3-\left(x-1\right)\times 4=3
ຄູນ x ກັບ x ເພື່ອໃຫ້ໄດ້ x^{2}.
x^{2}\times 3-\left(4x-4\right)=3
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x-1 ດ້ວຍ 4.
x^{2}\times 3-4x+4=3
ຊອກຫາຄຳກົງກັນຂ້າມຂອງ 4x-4, ຊອກຫາຄຳກົງກັນຂ້າມຂອງແຕ່ລະຄຳ.
x^{2}\times 3-4x=3-4
ລົບ 4 ອອກຈາກທັງສອງຂ້າງ.
x^{2}\times 3-4x=-1
ລົບ 4 ອອກຈາກ 3 ເພື່ອໃຫ້ໄດ້ -1.
3x^{2}-4x=-1
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
\frac{3x^{2}-4x}{3}=-\frac{1}{3}
ຫານທັງສອງຂ້າງດ້ວຍ 3.
x^{2}-\frac{4}{3}x=-\frac{1}{3}
ການຫານດ້ວຍ 3 ຈະຍົກເລີກການຄູນດ້ວຍ 3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{2}{3}\right)^{2}
ຫານ -\frac{4}{3}, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{2}{3}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{2}{3} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{2}{3} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
ເພີ່ມ -\frac{1}{3} ໃສ່ \frac{4}{9} ໂດຍການຊອກຫາຕົວຫານທົ່ວໄປ ແລະ ການເພີ່ມຕົວເສດ. ຈາກນັ້ນ, ຫຼຸດເສດສ່ວນເປັນຈຳນວນໜ້ອຍທີ່ສຸດຫາກເປັນໄປໄດ້.
\left(x-\frac{2}{3}\right)^{2}=\frac{1}{9}
ຕົວປະກອບ x^{2}-\frac{4}{3}x+\frac{4}{9}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{2}{3}=\frac{1}{3} x-\frac{2}{3}=-\frac{1}{3}
ເຮັດໃຫ້ງ່າຍ.
x=1 x=\frac{1}{3}
ເພີ່ມ \frac{2}{3} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
x=\frac{1}{3}
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບ 1 ໄດ້.