Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ບອກຄວາມແຕກຕ່າງ w.r.t. x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x-5 ກັບ x+3 ແມ່ນ \left(x-5\right)\left(x+3\right). ຄູນ \frac{2}{x-5} ໃຫ້ກັບ \frac{x+3}{x+3}. ຄູນ \frac{5}{x+3} ໃຫ້ກັບ \frac{x-5}{x-5}.
\frac{2\left(x+3\right)-5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)}
ເນື່ອງຈາກ \frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)} ແລະ \frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{2x+6-5x+25}{\left(x-5\right)\left(x+3\right)}
ຄູນໃນເສດສ່ວນ 2\left(x+3\right)-5\left(x-5\right).
\frac{-3x+31}{\left(x-5\right)\left(x+3\right)}
ຮວມຂໍ້ກຳນົດໃນ 2x+6-5x+25.
\frac{-3x+31}{x^{2}-2x-15}
ຂະຫຍາຍ \left(x-5\right)\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)})
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x-5 ກັບ x+3 ແມ່ນ \left(x-5\right)\left(x+3\right). ຄູນ \frac{2}{x-5} ໃຫ້ກັບ \frac{x+3}{x+3}. ຄູນ \frac{5}{x+3} ໃຫ້ກັບ \frac{x-5}{x-5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+3\right)-5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)})
ເນື່ອງຈາກ \frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)} ແລະ \frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+6-5x+25}{\left(x-5\right)\left(x+3\right)})
ຄູນໃນເສດສ່ວນ 2\left(x+3\right)-5\left(x-5\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{\left(x-5\right)\left(x+3\right)})
ຮວມຂໍ້ກຳນົດໃນ 2x+6-5x+25.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{x^{2}+3x-5x-15})
ນຳໃຊ້ຄຸນສົມບັດການແຈກຢາຍໂດຍການຄູນແຕ່ລະ x-5 ດ້ວຍ x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{x^{2}-2x-15})
ຮວມ 3x ແລະ -5x ເພື່ອຮັບ -2x.
\frac{\left(x^{2}-2x^{1}-15\right)\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{1}+31)-\left(-3x^{1}+31\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x^{1}-15)}{\left(x^{2}-2x^{1}-15\right)^{2}}
ສຳລັບສອງຟັງຊັນໃດກໍຕາມທີ່ຊອກຫາອະນຸພັນໄດ້, ອະນຸພັນຂອງຜົນຫານຂອງສອງຟັງຊັນແມ່ນຕົວຫານ ຄູນໃຫ້ກັບອະນຸພັນຂອງຕົວເສດ ລົບໃຫ້ກັບຕົວເສດ ຄູນໃຫ້ອະນຸພັນຂອງຕົວຫານ, ທັງໝົດຫານໃຫ້ອະນຸພັນທີ່ຂຶ້ນຮາກແລ້ວ.
\frac{\left(x^{2}-2x^{1}-15\right)\left(-3\right)x^{1-1}-\left(-3x^{1}+31\right)\left(2x^{2-1}-2x^{1-1}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
ອະນຸພັນຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຜົນຮວມຂອງອະນຸພັນຂອງພົດມັນ. ອະນຸພັນຂອງພົດແນ່ນອນໃດກໍຕາມແມ່ນ 0. ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
\frac{\left(x^{2}-2x^{1}-15\right)\left(-3\right)x^{0}-\left(-3x^{1}+31\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
ເຮັດໃຫ້ງ່າຍ.
\frac{x^{2}\left(-3\right)x^{0}-2x^{1}\left(-3\right)x^{0}-15\left(-3\right)x^{0}-\left(-3x^{1}+31\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
ຄູນ x^{2}-2x^{1}-15 ໃຫ້ກັບ -3x^{0}.
\frac{x^{2}\left(-3\right)x^{0}-2x^{1}\left(-3\right)x^{0}-15\left(-3\right)x^{0}-\left(-3x^{1}\times 2x^{1}-3x^{1}\left(-2\right)x^{0}+31\times 2x^{1}+31\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
ຄູນ -3x^{1}+31 ໃຫ້ກັບ 2x^{1}-2x^{0}.
\frac{-3x^{2}-2\left(-3\right)x^{1}-15\left(-3\right)x^{0}-\left(-3\times 2x^{1+1}-3\left(-2\right)x^{1}+31\times 2x^{1}+31\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
ເພື່ອຄູນກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ເພີ່ມເລກກຳລັງຂອງພວກມັນ.
\frac{-3x^{2}+6x^{1}+45x^{0}-\left(-6x^{2}+6x^{1}+62x^{1}-62x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
ເຮັດໃຫ້ງ່າຍ.
\frac{3x^{2}-62x^{1}+107x^{0}}{\left(x^{2}-2x^{1}-15\right)^{2}}
ຮວມຄຳສັບ.
\frac{3x^{2}-62x+107x^{0}}{\left(x^{2}-2x-15\right)^{2}}
ສຳລັບ t ໃດກໍຕາມ, t^{1}=t.
\frac{3x^{2}-62x+107\times 1}{\left(x^{2}-2x-15\right)^{2}}
ສຳລັບ t ໃດກໍຕາມຍົກເວັ້ນ 0, t^{0}=1.
\frac{3x^{2}-62x+107}{\left(x^{2}-2x-15\right)^{2}}
ສຳລັບ t ໃດກໍຕາມ, t\times 1=t ແລະ 1t=t.