Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ບອກຄວາມແຕກຕ່າງ w.r.t. x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{2x}{x\left(x+4\right)}+\frac{3\left(x+4\right)}{x\left(x+4\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x+4 ກັບ x ແມ່ນ x\left(x+4\right). ຄູນ \frac{2}{x+4} ໃຫ້ກັບ \frac{x}{x}. ຄູນ \frac{3}{x} ໃຫ້ກັບ \frac{x+4}{x+4}.
\frac{2x+3\left(x+4\right)}{x\left(x+4\right)}
ເນື່ອງຈາກ \frac{2x}{x\left(x+4\right)} ແລະ \frac{3\left(x+4\right)}{x\left(x+4\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{2x+3x+12}{x\left(x+4\right)}
ຄູນໃນເສດສ່ວນ 2x+3\left(x+4\right).
\frac{5x+12}{x\left(x+4\right)}
ຮວມຂໍ້ກຳນົດໃນ 2x+3x+12.
\frac{5x+12}{x^{2}+4x}
ຂະຫຍາຍ x\left(x+4\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{x\left(x+4\right)}+\frac{3\left(x+4\right)}{x\left(x+4\right)})
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x+4 ກັບ x ແມ່ນ x\left(x+4\right). ຄູນ \frac{2}{x+4} ໃຫ້ກັບ \frac{x}{x}. ຄູນ \frac{3}{x} ໃຫ້ກັບ \frac{x+4}{x+4}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+3\left(x+4\right)}{x\left(x+4\right)})
ເນື່ອງຈາກ \frac{2x}{x\left(x+4\right)} ແລະ \frac{3\left(x+4\right)}{x\left(x+4\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+3x+12}{x\left(x+4\right)})
ຄູນໃນເສດສ່ວນ 2x+3\left(x+4\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x+12}{x\left(x+4\right)})
ຮວມຂໍ້ກຳນົດໃນ 2x+3x+12.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x+12}{x^{2}+4x})
ໃຊ້ຄຸນສົມບັດການແຈກແຈງເພື່ອຄູນ x ດ້ວຍ x+4.
\frac{\left(x^{2}+4x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1}+12)-\left(5x^{1}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+4x^{1})}{\left(x^{2}+4x^{1}\right)^{2}}
ສຳລັບສອງຟັງຊັນໃດກໍຕາມທີ່ຊອກຫາອະນຸພັນໄດ້, ອະນຸພັນຂອງຜົນຫານຂອງສອງຟັງຊັນແມ່ນຕົວຫານ ຄູນໃຫ້ກັບອະນຸພັນຂອງຕົວເສດ ລົບໃຫ້ກັບຕົວເສດ ຄູນໃຫ້ອະນຸພັນຂອງຕົວຫານ, ທັງໝົດຫານໃຫ້ອະນຸພັນທີ່ຂຶ້ນຮາກແລ້ວ.
\frac{\left(x^{2}+4x^{1}\right)\times 5x^{1-1}-\left(5x^{1}+12\right)\left(2x^{2-1}+4x^{1-1}\right)}{\left(x^{2}+4x^{1}\right)^{2}}
ອະນຸພັນຂອງພະຫຸນາມໃດໜຶ່ງແມ່ນຜົນຮວມຂອງອະນຸພັນຂອງພົດມັນ. ອະນຸພັນຂອງພົດແນ່ນອນໃດກໍຕາມແມ່ນ 0. ອະນຸພັນຂອງ ax^{n} ແມ່ນ nax^{n-1}.
\frac{\left(x^{2}+4x^{1}\right)\times 5x^{0}-\left(5x^{1}+12\right)\left(2x^{1}+4x^{0}\right)}{\left(x^{2}+4x^{1}\right)^{2}}
ເຮັດໃຫ້ງ່າຍ.
\frac{x^{2}\times 5x^{0}+4x^{1}\times 5x^{0}-\left(5x^{1}+12\right)\left(2x^{1}+4x^{0}\right)}{\left(x^{2}+4x^{1}\right)^{2}}
ຄູນ x^{2}+4x^{1} ໃຫ້ກັບ 5x^{0}.
\frac{x^{2}\times 5x^{0}+4x^{1}\times 5x^{0}-\left(5x^{1}\times 2x^{1}+5x^{1}\times 4x^{0}+12\times 2x^{1}+12\times 4x^{0}\right)}{\left(x^{2}+4x^{1}\right)^{2}}
ຄູນ 5x^{1}+12 ໃຫ້ກັບ 2x^{1}+4x^{0}.
\frac{5x^{2}+4\times 5x^{1}-\left(5\times 2x^{1+1}+5\times 4x^{1}+12\times 2x^{1}+12\times 4x^{0}\right)}{\left(x^{2}+4x^{1}\right)^{2}}
ເພື່ອຄູນກຳລັງຂອງຖານດຽວກັນ, ໃຫ້ເພີ່ມເລກກຳລັງຂອງພວກມັນ.
\frac{5x^{2}+20x^{1}-\left(10x^{2}+20x^{1}+24x^{1}+48x^{0}\right)}{\left(x^{2}+4x^{1}\right)^{2}}
ເຮັດໃຫ້ງ່າຍ.
\frac{-5x^{2}-24x^{1}-48x^{0}}{\left(x^{2}+4x^{1}\right)^{2}}
ຮວມຄຳສັບ.
\frac{-5x^{2}-24x-48x^{0}}{\left(x^{2}+4x\right)^{2}}
ສຳລັບ t ໃດກໍຕາມ, t^{1}=t.
\frac{-5x^{2}-24x-48}{\left(x^{2}+4x\right)^{2}}
ສຳລັບ t ໃດກໍຕາມຍົກເວັ້ນ 0, t^{0}=1.