Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ພາກສ່ວນແທ້
Tick mark Image

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{104i\left(5-i\right)}{\left(5+i\right)\left(5-i\right)}
ຄູນຕົວເສດ ແລະ ຕົວຫານດ້ວຍສັງຍຸດຊັບຊ້ອນຂອງຕົວຫານ, 5-i.
\frac{104i\left(5-i\right)}{5^{2}-i^{2}}
ການຄູນສາມາດປ່ຽນເປັນຮາກອື່ນໂດຍໃຊ້ກົດ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{104i\left(5-i\right)}{26}
ຕາມຄຳນິຍາມ, i^{2} ແມ່ນ -1. ຄຳນວນຕົວຫານ.
\frac{104i\times 5+104\left(-1\right)i^{2}}{26}
ຄູນ 104i ໃຫ້ກັບ 5-i.
\frac{104i\times 5+104\left(-1\right)\left(-1\right)}{26}
ຕາມຄຳນິຍາມ, i^{2} ແມ່ນ -1.
\frac{104+520i}{26}
ຄູນໃນເສດສ່ວນ 104i\times 5+104\left(-1\right)\left(-1\right). ຈັດລຳດັບພົດຄືນໃໝ່.
4+20i
ຫານ 104+520i ດ້ວຍ 26 ເພື່ອໄດ້ 4+20i.
Re(\frac{104i\left(5-i\right)}{\left(5+i\right)\left(5-i\right)})
ຄູນທັງຕົວເສດ ແລະ ຕົວຫານຂອງ \frac{104i}{5+i} ດ້ວຍຄູ່ຈຳນວນຊັບຊ້ອນຂອງຕົວຫານ, 5-i.
Re(\frac{104i\left(5-i\right)}{5^{2}-i^{2}})
ການຄູນສາມາດປ່ຽນເປັນຮາກອື່ນໂດຍໃຊ້ກົດ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{104i\left(5-i\right)}{26})
ຕາມຄຳນິຍາມ, i^{2} ແມ່ນ -1. ຄຳນວນຕົວຫານ.
Re(\frac{104i\times 5+104\left(-1\right)i^{2}}{26})
ຄູນ 104i ໃຫ້ກັບ 5-i.
Re(\frac{104i\times 5+104\left(-1\right)\left(-1\right)}{26})
ຕາມຄຳນິຍາມ, i^{2} ແມ່ນ -1.
Re(\frac{104+520i}{26})
ຄູນໃນເສດສ່ວນ 104i\times 5+104\left(-1\right)\left(-1\right). ຈັດລຳດັບພົດຄືນໃໝ່.
Re(4+20i)
ຫານ 104+520i ດ້ວຍ 26 ເພື່ອໄດ້ 4+20i.
4
ສ່ວນແທ້ຂອງ4+20i ແມ່ນ 4.