ແກ້ສຳລັບ x
x=-1
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
x+2-4=\left(x-2\right)\left(x+2\right)
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບຄ່າໃດຂອງ -2,2 ໄດ້ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ \left(x-2\right)\left(x+2\right), ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ x-2,x^{2}-4.
x-2=\left(x-2\right)\left(x+2\right)
ລົບ 4 ອອກຈາກ 2 ເພື່ອໃຫ້ໄດ້ -2.
x-2=x^{2}-4
ພິຈາລະນາ \left(x-2\right)\left(x+2\right). ການຄູນສາມາດປ່ຽນເປັນຮາກອື່ນໂດຍໃຊ້ກົດ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 2.
x-2-x^{2}=-4
ລົບ x^{2} ອອກຈາກທັງສອງຂ້າງ.
x-2-x^{2}+4=0
ເພີ່ມ 4 ໃສ່ທັງສອງດ້ານ.
x+2-x^{2}=0
ເພີ່ມ -2 ແລະ 4 ເພື່ອໃຫ້ໄດ້ 2.
-x^{2}+x+2=0
ຈັດຮຽງພະຫຸນາມຄືນໃໝ່ໃຫ້ເປັນຮູບແບບມາດຕະຖານ. ວາງພົດຕາມລຳດັບຈາກສູງສຸດຫາຕ່ຳສຸດ.
a+b=1 ab=-2=-2
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ -x^{2}+ax+bx+2. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
a=2 b=-1
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ຄູ່ດັ່ງກ່າວເປັນທາງອອກລະບົບ.
\left(-x^{2}+2x\right)+\left(-x+2\right)
ຂຽນ -x^{2}+x+2 ຄືນໃໝ່ເປັນ \left(-x^{2}+2x\right)+\left(-x+2\right).
-x\left(x-2\right)-\left(x-2\right)
ຕົວຫານ -x ໃນຕອນທຳອິດ ແລະ -1 ໃນກຸ່ມທີສອງ.
\left(x-2\right)\left(-x-1\right)
ແຍກຄຳທົ່ວໄປ x-2 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=2 x=-1
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-2=0 ແລະ -x-1=0.
x=-1
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບ 2 ໄດ້.
x+2-4=\left(x-2\right)\left(x+2\right)
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບຄ່າໃດຂອງ -2,2 ໄດ້ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ \left(x-2\right)\left(x+2\right), ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ x-2,x^{2}-4.
x-2=\left(x-2\right)\left(x+2\right)
ລົບ 4 ອອກຈາກ 2 ເພື່ອໃຫ້ໄດ້ -2.
x-2=x^{2}-4
ພິຈາລະນາ \left(x-2\right)\left(x+2\right). ການຄູນສາມາດປ່ຽນເປັນຮາກອື່ນໂດຍໃຊ້ກົດ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 2.
x-2-x^{2}=-4
ລົບ x^{2} ອອກຈາກທັງສອງຂ້າງ.
x-2-x^{2}+4=0
ເພີ່ມ 4 ໃສ່ທັງສອງດ້ານ.
x+2-x^{2}=0
ເພີ່ມ -2 ແລະ 4 ເພື່ອໃຫ້ໄດ້ 2.
-x^{2}+x+2=0
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ -1 ສຳລັບ a, 1 ສຳລັບ b ແລະ 2 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 1.
x=\frac{-1±\sqrt{1+4\times 2}}{2\left(-1\right)}
ຄູນ -4 ໃຫ້ກັບ -1.
x=\frac{-1±\sqrt{1+8}}{2\left(-1\right)}
ຄູນ 4 ໃຫ້ກັບ 2.
x=\frac{-1±\sqrt{9}}{2\left(-1\right)}
ເພີ່ມ 1 ໃສ່ 8.
x=\frac{-1±3}{2\left(-1\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 9.
x=\frac{-1±3}{-2}
ຄູນ 2 ໃຫ້ກັບ -1.
x=\frac{2}{-2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-1±3}{-2} ເມື່ອ ± ບວກ. ເພີ່ມ -1 ໃສ່ 3.
x=-1
ຫານ 2 ດ້ວຍ -2.
x=-\frac{4}{-2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-1±3}{-2} ເມື່ອ ± ເປັນລົບ. ລົບ 3 ອອກຈາກ -1.
x=2
ຫານ -4 ດ້ວຍ -2.
x=-1 x=2
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
x=-1
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບ 2 ໄດ້.
x+2-4=\left(x-2\right)\left(x+2\right)
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບຄ່າໃດຂອງ -2,2 ໄດ້ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນສອງຂ້າງຂອງສົມຜົນດ້ວຍ \left(x-2\right)\left(x+2\right), ຕົວຄູນທົ່ວໄປທີ່ໜ້ອຍທີ່ສຸດຂອງ x-2,x^{2}-4.
x-2=\left(x-2\right)\left(x+2\right)
ລົບ 4 ອອກຈາກ 2 ເພື່ອໃຫ້ໄດ້ -2.
x-2=x^{2}-4
ພິຈາລະນາ \left(x-2\right)\left(x+2\right). ການຄູນສາມາດປ່ຽນເປັນຮາກອື່ນໂດຍໃຊ້ກົດ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 2.
x-2-x^{2}=-4
ລົບ x^{2} ອອກຈາກທັງສອງຂ້າງ.
x-x^{2}=-4+2
ເພີ່ມ 2 ໃສ່ທັງສອງດ້ານ.
x-x^{2}=-2
ເພີ່ມ -4 ແລະ 2 ເພື່ອໃຫ້ໄດ້ -2.
-x^{2}+x=-2
ສົມຜົນກຳລັງສອງແບບນີ້ສາມາດແກ້ໄດ້ໂດຍການເຮັດຮາກໃຫ້ສຳເລັດ. ເພື່ອສຳເລັດການເຮັດຮາກ, ສົມຜົນຈະຕ້ອງຢູ່ໃນຮູບແບບ x^{2}+bx=c ກ່ອນ.
\frac{-x^{2}+x}{-1}=-\frac{2}{-1}
ຫານທັງສອງຂ້າງດ້ວຍ -1.
x^{2}+\frac{1}{-1}x=-\frac{2}{-1}
ການຫານດ້ວຍ -1 ຈະຍົກເລີກການຄູນດ້ວຍ -1.
x^{2}-x=-\frac{2}{-1}
ຫານ 1 ດ້ວຍ -1.
x^{2}-x=2
ຫານ -2 ດ້ວຍ -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
ຫານ -1, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -\frac{1}{2}. ຈາກນັ້ນເພີ່ມຮາກຂອງ -\frac{1}{2} ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
ຮາກທີສອງຂອງຄ່າສະເລ່ຍ -\frac{1}{2} ໂດຍຮາກທີສອງຂອງທັງຕົວສເສດ ແລະ ຕົວຫານຂອງເສດສ່ວນ.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
ເພີ່ມ 2 ໃສ່ \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
ຕົວປະກອບ x^{2}-x+\frac{1}{4}. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
ເຮັດໃຫ້ງ່າຍ.
x=2 x=-1
ເພີ່ມ \frac{1}{2} ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.
x=-1
x ແບບຫຼາກຫຼາຍບໍ່ສາມາດເທົ່າກັບ 2 ໄດ້.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}