Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ຂະຫຍາຍ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{1}{x-1}+\frac{3x+1}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+6x-1}{1+x^{3}}
ຕົວປະກອບ x^{2}-1.
\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{3x+1}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+6x-1}{1+x^{3}}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x-1 ກັບ \left(x-1\right)\left(x+1\right) ແມ່ນ \left(x-1\right)\left(x+1\right). ຄູນ \frac{1}{x-1} ໃຫ້ກັບ \frac{x+1}{x+1}.
\frac{x+1+3x+1}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+6x-1}{1+x^{3}}
ເນື່ອງຈາກ \frac{x+1}{\left(x-1\right)\left(x+1\right)} ແລະ \frac{3x+1}{\left(x-1\right)\left(x+1\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{4x+2}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+6x-1}{1+x^{3}}
ຮວມຂໍ້ກຳນົດໃນ x+1+3x+1.
\frac{4x+2}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+6x-1}{\left(x+1\right)\left(x^{2}-x+1\right)}
ຕົວປະກອບ 1+x^{3}.
\frac{\left(4x+2\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)}-\frac{\left(3x^{2}+6x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ \left(x-1\right)\left(x+1\right) ກັບ \left(x+1\right)\left(x^{2}-x+1\right) ແມ່ນ \left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right). ຄູນ \frac{4x+2}{\left(x-1\right)\left(x+1\right)} ໃຫ້ກັບ \frac{x^{2}-x+1}{x^{2}-x+1}. ຄູນ \frac{3x^{2}+6x-1}{\left(x+1\right)\left(x^{2}-x+1\right)} ໃຫ້ກັບ \frac{x-1}{x-1}.
\frac{\left(4x+2\right)\left(x^{2}-x+1\right)-\left(3x^{2}+6x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)}
ເນື່ອງຈາກ \frac{\left(4x+2\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)} ແລະ \frac{\left(3x^{2}+6x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{4x^{3}-4x^{2}+4x+2x^{2}-2x+2-3x^{3}+3x^{2}-6x^{2}+6x+x-1}{\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)}
ຄູນໃນເສດສ່ວນ \left(4x+2\right)\left(x^{2}-x+1\right)-\left(3x^{2}+6x-1\right)\left(x-1\right).
\frac{x^{3}-5x^{2}+9x+1}{\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)}
ຮວມຂໍ້ກຳນົດໃນ 4x^{3}-4x^{2}+4x+2x^{2}-2x+2-3x^{3}+3x^{2}-6x^{2}+6x+x-1.
\frac{x^{3}-5x^{2}+9x+1}{x^{4}-x^{3}+x-1}
ຂະຫຍາຍ \left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right).
\frac{1}{x-1}+\frac{3x+1}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+6x-1}{1+x^{3}}
ຕົວປະກອບ x^{2}-1.
\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{3x+1}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+6x-1}{1+x^{3}}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x-1 ກັບ \left(x-1\right)\left(x+1\right) ແມ່ນ \left(x-1\right)\left(x+1\right). ຄູນ \frac{1}{x-1} ໃຫ້ກັບ \frac{x+1}{x+1}.
\frac{x+1+3x+1}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+6x-1}{1+x^{3}}
ເນື່ອງຈາກ \frac{x+1}{\left(x-1\right)\left(x+1\right)} ແລະ \frac{3x+1}{\left(x-1\right)\left(x+1\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{4x+2}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+6x-1}{1+x^{3}}
ຮວມຂໍ້ກຳນົດໃນ x+1+3x+1.
\frac{4x+2}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+6x-1}{\left(x+1\right)\left(x^{2}-x+1\right)}
ຕົວປະກອບ 1+x^{3}.
\frac{\left(4x+2\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)}-\frac{\left(3x^{2}+6x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ \left(x-1\right)\left(x+1\right) ກັບ \left(x+1\right)\left(x^{2}-x+1\right) ແມ່ນ \left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right). ຄູນ \frac{4x+2}{\left(x-1\right)\left(x+1\right)} ໃຫ້ກັບ \frac{x^{2}-x+1}{x^{2}-x+1}. ຄູນ \frac{3x^{2}+6x-1}{\left(x+1\right)\left(x^{2}-x+1\right)} ໃຫ້ກັບ \frac{x-1}{x-1}.
\frac{\left(4x+2\right)\left(x^{2}-x+1\right)-\left(3x^{2}+6x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)}
ເນື່ອງຈາກ \frac{\left(4x+2\right)\left(x^{2}-x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)} ແລະ \frac{\left(3x^{2}+6x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{4x^{3}-4x^{2}+4x+2x^{2}-2x+2-3x^{3}+3x^{2}-6x^{2}+6x+x-1}{\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)}
ຄູນໃນເສດສ່ວນ \left(4x+2\right)\left(x^{2}-x+1\right)-\left(3x^{2}+6x-1\right)\left(x-1\right).
\frac{x^{3}-5x^{2}+9x+1}{\left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right)}
ຮວມຂໍ້ກຳນົດໃນ 4x^{3}-4x^{2}+4x+2x^{2}-2x+2-3x^{3}+3x^{2}-6x^{2}+6x+x-1.
\frac{x^{3}-5x^{2}+9x+1}{x^{4}-x^{3}+x-1}
ຂະຫຍາຍ \left(x-1\right)\left(x+1\right)\left(x^{2}-x+1\right).