ປະເມີນ
\frac{2\left(4x-5\right)}{\left(x-3\right)\left(x+4\right)\left(x^{2}-1\right)}
ບອກຄວາມແຕກຕ່າງ w.r.t. x
\frac{2\left(43-130x+67x^{2}+12x^{3}-12x^{4}\right)}{\left(\left(x-3\right)\left(x+4\right)\left(x^{2}-1\right)\right)^{2}}
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\frac{1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{\left(x-1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
ຕົວປະກອບ x^{2}-1. ຕົວປະກອບ x^{2}+3x-4.
\frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ \left(x-1\right)\left(x+1\right) ກັບ \left(x-1\right)\left(x+4\right) ແມ່ນ \left(x-1\right)\left(x+1\right)\left(x+4\right). ຄູນ \frac{1}{\left(x-1\right)\left(x+1\right)} ໃຫ້ກັບ \frac{x+4}{x+4}. ຄູນ \frac{2}{\left(x-1\right)\left(x+4\right)} ໃຫ້ກັບ \frac{x+1}{x+1}.
\frac{x+4-2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
ເນື່ອງຈາກ \frac{x+4}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} ແລະ \frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{x+4-2x-2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
ຄູນໃນເສດສ່ວນ x+4-2\left(x+1\right).
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{x^{2}-2x-3}
ຮວມຂໍ້ກຳນົດໃນ x+4-2x-2.
\frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{1}{\left(x-3\right)\left(x+1\right)}
ຕົວປະກອບ x^{2}-2x-3.
\frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}+\frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ \left(x-1\right)\left(x+1\right)\left(x+4\right) ກັບ \left(x-3\right)\left(x+1\right) ແມ່ນ \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right). ຄູນ \frac{-x+2}{\left(x-1\right)\left(x+1\right)\left(x+4\right)} ໃຫ້ກັບ \frac{x-3}{x-3}. ຄູນ \frac{1}{\left(x-3\right)\left(x+1\right)} ໃຫ້ກັບ \frac{\left(x-1\right)\left(x+4\right)}{\left(x-1\right)\left(x+4\right)}.
\frac{\left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
ເນື່ອງຈາກ \frac{\left(-x+2\right)\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} ແລະ \frac{\left(x-1\right)\left(x+4\right)}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{-x^{2}+3x+2x-6+x^{2}+4x-x-4}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
ຄູນໃນເສດສ່ວນ \left(-x+2\right)\left(x-3\right)+\left(x-1\right)\left(x+4\right).
\frac{8x-10}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}
ຮວມຂໍ້ກຳນົດໃນ -x^{2}+3x+2x-6+x^{2}+4x-x-4.
\frac{8x-10}{x^{4}+x^{3}-13x^{2}-x+12}
ຂະຫຍາຍ \left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+4\right).
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}