ປະເມີນ
\frac{1}{1-r^{2}}
ບອກຄວາມແຕກຕ່າງ w.r.t. r
\frac{2r}{\left(1-r^{2}\right)^{2}}
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\frac{1}{1-r}-\frac{r}{\left(r-1\right)\left(-r-1\right)}
ຕົວປະກອບ 1-r^{2}.
\frac{-\left(r+1\right)}{\left(r-1\right)\left(r+1\right)}-\frac{-r}{\left(r-1\right)\left(r+1\right)}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ 1-r ກັບ \left(r-1\right)\left(-r-1\right) ແມ່ນ \left(r-1\right)\left(r+1\right). ຄູນ \frac{1}{1-r} ໃຫ້ກັບ \frac{-\left(r+1\right)}{-\left(r+1\right)}. ຄູນ \frac{r}{\left(r-1\right)\left(-r-1\right)} ໃຫ້ກັບ \frac{-1}{-1}.
\frac{-\left(r+1\right)-\left(-r\right)}{\left(r-1\right)\left(r+1\right)}
ເນື່ອງຈາກ \frac{-\left(r+1\right)}{\left(r-1\right)\left(r+1\right)} ແລະ \frac{-r}{\left(r-1\right)\left(r+1\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ຫານພວກມັນໂດຍການຫານຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{-r-1+r}{\left(r-1\right)\left(r+1\right)}
ຄູນໃນເສດສ່ວນ -\left(r+1\right)-\left(-r\right).
\frac{-1}{\left(r-1\right)\left(r+1\right)}
ຮວມຂໍ້ກຳນົດໃນ -r-1+r.
\frac{-1}{r^{2}-1}
ຂະຫຍາຍ \left(r-1\right)\left(r+1\right).
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}