ຢັ້ງຢືນ
ຈິງ
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{\sqrt{2}\sqrt{2}}=\frac{\sqrt{2}}{2}
ຄູນ \sqrt{2} ກັບ \sqrt{2} ເພື່ອໃຫ້ໄດ້ 2.
\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
ຄູນ \sqrt{2} ກັບ \sqrt{2} ເພື່ອໃຫ້ໄດ້ 2.
\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
ໃຊ້ເຫດຜົນຕັດສິນຕົວຫານຂອງ \frac{1}{\sqrt{2}} ໂດຍການຫານຕົວເສດ ແລະ ຕົວຫານໂດຍ \sqrt{2}.
\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
ຮາກຂອງ \sqrt{2} ແມ່ນ 2.
\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=0\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
ລົບ \frac{\sqrt{2}}{2} ອອກຈາກທັງສອງຂ້າງ.
0=0\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
ຮວມ \frac{\sqrt{2}}{2} ແລະ -\frac{\sqrt{2}}{2} ເພື່ອຮັບ 0.
\text{true}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
ປຽບທຽບ 0 ກັບ 0.
\text{true}\text{ and }\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=0
ລົບ \frac{\sqrt{2}}{2} ອອກຈາກທັງສອງຂ້າງ.
\text{true}\text{ and }0=0
ຮວມ \frac{\sqrt{2}}{2} ແລະ -\frac{\sqrt{2}}{2} ເພື່ອຮັບ 0.
\text{true}\text{ and }\text{true}
ປຽບທຽບ 0 ກັບ 0.
\text{true}
ການຮວມກັນຂອງ \text{true} ແລະ \text{true} ແມ່ນ \text{true}.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}