Skip ໄປຫາເນື້ອຫາຫຼັກ
ແກ້ສຳລັບ x
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

-x^{2}+2x+8=0
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ -6 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ \left(x+6\right)^{2}\left(x^{2}+2\right).
a+b=2 ab=-8=-8
ເພື່ອແກ້ສົມຜົນ, ໃຫ້ຫານທາງຊ້າຍໂດຍການຈັດກຸ່ມ, ທຳອິດ, ທາງຊ້າຍຈະຕ້ອງຂຽນໃໝ່ເປັນ -x^{2}+ax+bx+8. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
-1,8 -2,4
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າບວກ, ຈຳນວນບວກຈຶ່ງມີຄ່າສົມບູນສູງກວ່າຈຳນວນລົບ. ສ້າງລາຍຊື່ຄູ່ຈຳນວນເຕັມທັງໝົດທີ່ໃຫ້ຜົນ -8.
-1+8=7 -2+4=2
ຄຳນວນຈຳນວນຮວມສຳລັບແຕ່ລະຄູ່.
a=4 b=-2
ທາງອອກດັ່ງກ່າວເປັນຄູ່ທີ່ໃຫ້ຜົນຮວມ 2.
\left(-x^{2}+4x\right)+\left(-2x+8\right)
ຂຽນ -x^{2}+2x+8 ຄືນໃໝ່ເປັນ \left(-x^{2}+4x\right)+\left(-2x+8\right).
-x\left(x-4\right)-2\left(x-4\right)
ຕົວຫານ -x ໃນຕອນທຳອິດ ແລະ -2 ໃນກຸ່ມທີສອງ.
\left(x-4\right)\left(-x-2\right)
ແຍກຄຳທົ່ວໄປ x-4 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
x=4 x=-2
ເພື່ອຊອກຫາວິທີແກ້ສົມຜົນ, ໃຫ້ແກ້ x-4=0 ແລະ -x-2=0.
-x^{2}+2x+8=0
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ -6 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ \left(x+6\right)^{2}\left(x^{2}+2\right).
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
ສົມຜົນນີ້ແມ່ນຢູ່ໃນຮູບແບບມາດຕະຖານ: ax^{2}+bx+c=0. ການແທນ -1 ສຳລັບ a, 2 ສຳລັບ b ແລະ 8 ສຳລັບ c ໃນສູດຄຳນວນກຳລັງສອງ, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 8}}{2\left(-1\right)}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ 2.
x=\frac{-2±\sqrt{4+4\times 8}}{2\left(-1\right)}
ຄູນ -4 ໃຫ້ກັບ -1.
x=\frac{-2±\sqrt{4+32}}{2\left(-1\right)}
ຄູນ 4 ໃຫ້ກັບ 8.
x=\frac{-2±\sqrt{36}}{2\left(-1\right)}
ເພີ່ມ 4 ໃສ່ 32.
x=\frac{-2±6}{2\left(-1\right)}
ເອົາຮາກຂັ້ນສອງຂອງ 36.
x=\frac{-2±6}{-2}
ຄູນ 2 ໃຫ້ກັບ -1.
x=\frac{4}{-2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-2±6}{-2} ເມື່ອ ± ບວກ. ເພີ່ມ -2 ໃສ່ 6.
x=-2
ຫານ 4 ດ້ວຍ -2.
x=-\frac{8}{-2}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{-2±6}{-2} ເມື່ອ ± ເປັນລົບ. ລົບ 6 ອອກຈາກ -2.
x=4
ຫານ -8 ດ້ວຍ -2.
x=-2 x=4
ຕອນນີ້ແກ້ໄຂສົມຜົນແລ້ວ.
-x^{2}+2x+8=0
x ແປຫຼາກຫຼາຍຈະຕ້ອງບໍ່ເທົ່າກັບ -6 ເນື່ອງຈາກບໍ່ໄດ້ລະບຸການຫານດ້ວຍສູນ. ຄູນທັງສອງຂ້າງຂອງສົມຜົນດ້ວຍ \left(x+6\right)^{2}\left(x^{2}+2\right).
-x^{2}+2x=-8
ລົບ 8 ອອກຈາກທັງສອງຂ້າງ. ອັນໃດກໍໄດ້ຫານຈາກສູນໄດ້ຈຳນວນລົບຂອງມັນ.
\frac{-x^{2}+2x}{-1}=-\frac{8}{-1}
ຫານທັງສອງຂ້າງດ້ວຍ -1.
x^{2}+\frac{2}{-1}x=-\frac{8}{-1}
ການຫານດ້ວຍ -1 ຈະຍົກເລີກການຄູນດ້ວຍ -1.
x^{2}-2x=-\frac{8}{-1}
ຫານ 2 ດ້ວຍ -1.
x^{2}-2x=8
ຫານ -8 ດ້ວຍ -1.
x^{2}-2x+1=8+1
ຫານ -2, ຄ່າສຳປະສິດຂອງ x ດ້ວຍ 2 ເພື່ອໃຫ້ໄດ້ -1. ຈາກນັ້ນເພີ່ມຮາກຂອງ -1 ໃສ່ທັງສອງຂ້າງຂອງສົມຜົນ. ຂັ້ນຕອນນີ້ຈະເຮັດໃຫ້ຂ້າງຊ້າຍຂອງສົມຜົນເປັນຮາກສົມບູນ.
x^{2}-2x+1=9
ເພີ່ມ 8 ໃສ່ 1.
\left(x-1\right)^{2}=9
ຕົວປະກອບ x^{2}-2x+1. ໃນທົ່ວໄປ, ເມື່ອ x^{2}+bx+c ເປັນຮາກສົມບູນ, ມັນສາມາດເປັນຕົວປະກອບ \left(x+\frac{b}{2}\right)^{2} ໄດ້ສະເໝີ.
\sqrt{\left(x-1\right)^{2}}=\sqrt{9}
ເອົາຮາກຂັ້ນສອງຂອງທັງສອງຂ້າງຂອງສົມຜົນ.
x-1=3 x-1=-3
ເຮັດໃຫ້ງ່າຍ.
x=4 x=-2
ເພີ່ມ 1 ໃສ່ທັງສອງດ້ານຂອງສົມຜົນ.