Skip ໄປຫາເນື້ອຫາຫຼັກ
ປະເມີນ
Tick mark Image
ຕົວປະກອບ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

\frac{\left(\sqrt{3}\right)^{2}+4x\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
ຄ່າໃດທີ່ຫານດ້ວຍໜຶ່ງແມ່ນຈະໄດ້ຕົວມັນເອງ.
\frac{3+4x\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
ຮາກຂອງ \sqrt{3} ແມ່ນ 3.
\frac{3+4x\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
ໃຊ້ເຫດຜົນຕັດສິນຕົວຫານຂອງ \frac{1}{\sqrt{2}} ໂດຍການຫານຕົວເສດ ແລະ ຕົວຫານໂດຍ \sqrt{2}.
\frac{3+4x\times \left(\frac{\sqrt{2}}{2}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
ຮາກຂອງ \sqrt{2} ແມ່ນ 2.
\frac{3+4x\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
ເພື່ອຍົກກຳລັງ \frac{\sqrt{2}}{2}, ໃຫ້ຍົກຕົວຄູນທັງສອງ ແລະ ຕົວຫານໃຫ້ການຍົກກຳລັງ ແລ້ວຫານ.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
ສະແດງ 4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} ເປັນໜຶ່ງເສດສ່ວນ.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
ຄູນ 3 ກັບ 5 ເພື່ອໃຫ້ໄດ້ 15.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
ໃຊ້ເຫດຜົນຕັດສິນຕົວຫານຂອງ \frac{2}{\sqrt{3}} ໂດຍການຫານຕົວເສດ ແລະ ຕົວຫານໂດຍ \sqrt{3}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \left(\frac{2\sqrt{3}}{3}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
ຮາກຂອງ \sqrt{3} ແມ່ນ 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
ເພື່ອຍົກກຳລັງ \frac{2\sqrt{3}}{3}, ໃຫ້ຍົກຕົວຄູນທັງສອງ ແລະ ຕົວຫານໃຫ້ການຍົກກຳລັງ ແລ້ວຫານ.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\times 0}{2+2-\left(\sqrt{3}\right)^{2}}
ຄຳນວນ 0 ກຳລັງ 2 ແລະ ໄດ້ 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
ຄູນ 15 ກັບ 0 ເພື່ອໃຫ້ໄດ້ 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{2^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
ຂະຫຍາຍ \left(2\sqrt{3}\right)^{2}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
ຄຳນວນ 2 ກຳລັງ 2 ແລະ ໄດ້ 4.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{4\times 3}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
ຮາກຂອງ \sqrt{3} ແມ່ນ 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{12}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
ຄູນ 4 ກັບ 3 ເພື່ອໃຫ້ໄດ້ 12.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{12}{9}}{2+2-\left(\sqrt{3}\right)^{2}}
ຄຳນວນ 3 ກຳລັງ 2 ແລະ ໄດ້ 9.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{4}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
ຫຼຸດເສດສ່ວນ \frac{12}{9} ເປັນຈຳນວນໜ້ອຍສຸດໂດຍແຍກ ແລະ ຍົກເລີກ 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x}{2+2-\left(\sqrt{3}\right)^{2}}
ຄູນ 0 ກັບ \frac{4}{3} ເພື່ອໃຫ້ໄດ້ 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0}{2+2-\left(\sqrt{3}\right)^{2}}
ອັນໃດກໍໄດ້ຄູນສູນໄດ້ຕົວມັນເອງ.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x}{2+2-\left(\sqrt{3}\right)^{2}}
ເພີ່ມ 3 ແລະ 0 ເພື່ອໃຫ້ໄດ້ 3.
\frac{3+\frac{4\times 2}{2^{2}}x}{2+2-\left(\sqrt{3}\right)^{2}}
ຮາກຂອງ \sqrt{2} ແມ່ນ 2.
\frac{3+\frac{8}{2^{2}}x}{2+2-\left(\sqrt{3}\right)^{2}}
ຄູນ 4 ກັບ 2 ເພື່ອໃຫ້ໄດ້ 8.
\frac{3+\frac{8}{4}x}{2+2-\left(\sqrt{3}\right)^{2}}
ຄຳນວນ 2 ກຳລັງ 2 ແລະ ໄດ້ 4.
\frac{3+2x}{2+2-\left(\sqrt{3}\right)^{2}}
ຫານ 8 ດ້ວຍ 4 ເພື່ອໄດ້ 2.
\frac{3+2x}{4-\left(\sqrt{3}\right)^{2}}
ເພີ່ມ 2 ແລະ 2 ເພື່ອໃຫ້ໄດ້ 4.
\frac{3+2x}{4-3}
ຮາກຂອງ \sqrt{3} ແມ່ນ 3.
\frac{3+2x}{1}
ລົບ 3 ອອກຈາກ 4 ເພື່ອໃຫ້ໄດ້ 1.
3+2x
ຄ່າໃດທີ່ຫານດ້ວຍໜຶ່ງແມ່ນຈະໄດ້ຕົວມັນເອງ.