ປະເມີນ
\frac{\left(x+1\right)\left(x+4\right)}{x^{2}+5x+10}
ຂະຫຍາຍ
\frac{x^{2}+5x+4}{x^{2}+5x+10}
Graph
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\frac{\frac{\left(x+2\right)\left(x+2\right)}{x\left(x+2\right)}+\frac{x}{x\left(x+2\right)}}{\frac{5}{x}+\frac{x}{x+2}}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x ກັບ x+2 ແມ່ນ x\left(x+2\right). ຄູນ \frac{x+2}{x} ໃຫ້ກັບ \frac{x+2}{x+2}. ຄູນ \frac{1}{x+2} ໃຫ້ກັບ \frac{x}{x}.
\frac{\frac{\left(x+2\right)\left(x+2\right)+x}{x\left(x+2\right)}}{\frac{5}{x}+\frac{x}{x+2}}
ເນື່ອງຈາກ \frac{\left(x+2\right)\left(x+2\right)}{x\left(x+2\right)} ແລະ \frac{x}{x\left(x+2\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{\frac{x^{2}+2x+2x+4+x}{x\left(x+2\right)}}{\frac{5}{x}+\frac{x}{x+2}}
ຄູນໃນເສດສ່ວນ \left(x+2\right)\left(x+2\right)+x.
\frac{\frac{x^{2}+5x+4}{x\left(x+2\right)}}{\frac{5}{x}+\frac{x}{x+2}}
ຮວມຂໍ້ກຳນົດໃນ x^{2}+2x+2x+4+x.
\frac{\frac{x^{2}+5x+4}{x\left(x+2\right)}}{\frac{5\left(x+2\right)}{x\left(x+2\right)}+\frac{xx}{x\left(x+2\right)}}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x ກັບ x+2 ແມ່ນ x\left(x+2\right). ຄູນ \frac{5}{x} ໃຫ້ກັບ \frac{x+2}{x+2}. ຄູນ \frac{x}{x+2} ໃຫ້ກັບ \frac{x}{x}.
\frac{\frac{x^{2}+5x+4}{x\left(x+2\right)}}{\frac{5\left(x+2\right)+xx}{x\left(x+2\right)}}
ເນື່ອງຈາກ \frac{5\left(x+2\right)}{x\left(x+2\right)} ແລະ \frac{xx}{x\left(x+2\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{\frac{x^{2}+5x+4}{x\left(x+2\right)}}{\frac{5x+10+x^{2}}{x\left(x+2\right)}}
ຄູນໃນເສດສ່ວນ 5\left(x+2\right)+xx.
\frac{\left(x^{2}+5x+4\right)x\left(x+2\right)}{x\left(x+2\right)\left(5x+10+x^{2}\right)}
ຫານ \frac{x^{2}+5x+4}{x\left(x+2\right)} ດ້ວຍ \frac{5x+10+x^{2}}{x\left(x+2\right)} ໂດຍການຄູນ \frac{x^{2}+5x+4}{x\left(x+2\right)} ໂດຍຕົວເລກທີ່ກັບກັນຂອງ \frac{5x+10+x^{2}}{x\left(x+2\right)}.
\frac{x^{2}+5x+4}{x^{2}+5x+10}
ຍົກເລີກ x\left(x+2\right) ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
\frac{\frac{\left(x+2\right)\left(x+2\right)}{x\left(x+2\right)}+\frac{x}{x\left(x+2\right)}}{\frac{5}{x}+\frac{x}{x+2}}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x ກັບ x+2 ແມ່ນ x\left(x+2\right). ຄູນ \frac{x+2}{x} ໃຫ້ກັບ \frac{x+2}{x+2}. ຄູນ \frac{1}{x+2} ໃຫ້ກັບ \frac{x}{x}.
\frac{\frac{\left(x+2\right)\left(x+2\right)+x}{x\left(x+2\right)}}{\frac{5}{x}+\frac{x}{x+2}}
ເນື່ອງຈາກ \frac{\left(x+2\right)\left(x+2\right)}{x\left(x+2\right)} ແລະ \frac{x}{x\left(x+2\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{\frac{x^{2}+2x+2x+4+x}{x\left(x+2\right)}}{\frac{5}{x}+\frac{x}{x+2}}
ຄູນໃນເສດສ່ວນ \left(x+2\right)\left(x+2\right)+x.
\frac{\frac{x^{2}+5x+4}{x\left(x+2\right)}}{\frac{5}{x}+\frac{x}{x+2}}
ຮວມຂໍ້ກຳນົດໃນ x^{2}+2x+2x+4+x.
\frac{\frac{x^{2}+5x+4}{x\left(x+2\right)}}{\frac{5\left(x+2\right)}{x\left(x+2\right)}+\frac{xx}{x\left(x+2\right)}}
ເພື່ອເພີ່ມ ຫຼື ຫານນິພົດ, ໃຫ້ຂະຫຍາຍພວກມັນເພື່ອໃຫ້ຕົວຄູນມີຈຳນວນດຽວກັນ. ຈຳນວນຄູນທີ່ນິຍົມໜ້ອຍທີ່ສຸດຂອງ x ກັບ x+2 ແມ່ນ x\left(x+2\right). ຄູນ \frac{5}{x} ໃຫ້ກັບ \frac{x+2}{x+2}. ຄູນ \frac{x}{x+2} ໃຫ້ກັບ \frac{x}{x}.
\frac{\frac{x^{2}+5x+4}{x\left(x+2\right)}}{\frac{5\left(x+2\right)+xx}{x\left(x+2\right)}}
ເນື່ອງຈາກ \frac{5\left(x+2\right)}{x\left(x+2\right)} ແລະ \frac{xx}{x\left(x+2\right)} ມີຕົວຫານດຽວກັນ, ໃຫ້ເພີ່ມພວກມັນໂດຍການເພີ່ມຈຳນວນທີ່ເປັນເສດໃນເລກເສດສ່ວນຂອງພວກມັນ.
\frac{\frac{x^{2}+5x+4}{x\left(x+2\right)}}{\frac{5x+10+x^{2}}{x\left(x+2\right)}}
ຄູນໃນເສດສ່ວນ 5\left(x+2\right)+xx.
\frac{\left(x^{2}+5x+4\right)x\left(x+2\right)}{x\left(x+2\right)\left(5x+10+x^{2}\right)}
ຫານ \frac{x^{2}+5x+4}{x\left(x+2\right)} ດ້ວຍ \frac{5x+10+x^{2}}{x\left(x+2\right)} ໂດຍການຄູນ \frac{x^{2}+5x+4}{x\left(x+2\right)} ໂດຍຕົວເລກທີ່ກັບກັນຂອງ \frac{5x+10+x^{2}}{x\left(x+2\right)}.
\frac{x^{2}+5x+4}{x^{2}+5x+10}
ຍົກເລີກ x\left(x+2\right) ທັງໃນຕົວເສດ ແລະ ຕົວຫານ.
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}