ບອກຄວາມແຕກຕ່າງ w.r.t. A
-\sin(A)
ປະເມີນ
\cos(A)
ແບ່ງປັນ
ສໍາເນົາຄລິບ
\frac{\mathrm{d}}{\mathrm{d}A}(\cos(A)-0)
ຄູນ 0 ກັບ 15 ເພື່ອໃຫ້ໄດ້ 0.
\frac{\mathrm{d}}{\mathrm{d}A}(\cos(A)+0)
ຄູນ -1 ກັບ 0 ເພື່ອໃຫ້ໄດ້ 0.
\frac{\mathrm{d}}{\mathrm{d}A}(\cos(A))
ອັນໃດກໍໄດ້ບວກສູນໄດ້ຕົວມັນເອງ.
\frac{\mathrm{d}}{\mathrm{d}A}(\cos(A))=\left(\lim_{h\to 0}\frac{\cos(A+h)-\cos(A)}{h}\right)
ສຳລັບຟັງຊັນ f\left(x\right), ອະນຸພັນແມ່ນຂໍ້ຈຳກັດຂອງ \frac{f\left(x+h\right)-f\left(x\right)}{h} ເມື່ອ h ໄປເປັນ 0, ຫາກມີຂໍ້ຈຳກັດນັ້ນ.
\lim_{h\to 0}\frac{\cos(A+h)-\cos(A)}{h}
ໃຊ້ສູດບວກຮວມສຳລັບໂກຊິນ.
\lim_{h\to 0}\frac{\cos(A)\left(\cos(h)-1\right)-\sin(A)\sin(h)}{h}
ຕົວປະກອບຈາກ \cos(A).
\left(\lim_{h\to 0}\cos(A)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\left(\lim_{h\to 0}\sin(A)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
ຂຽນຂໍ້ຈຳກັດຄືນໃໝ່.
\cos(A)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(A)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
ໃຊ້ຂໍ້ເທັດຈິງທີ່ A ແມ່ນຄົງທີ່ເມື່ອການຄຳນວນຈຳກັດເປັນ h ໄປທີ່ 0.
\cos(A)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(A)
ຂໍ້ຈຳກັດ \lim_{A\to 0}\frac{\sin(A)}{A} ແມ່ນ 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
ເພື່ອປະເມີນຂໍ້ຈຳກັດ \lim_{h\to 0}\frac{\cos(h)-1}{h}, ທຳອິດໃຫ້ຄູນຕົວເສດ ແລະ ຕົວຫານດ້ວຍ \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
ຄູນ \cos(h)+1 ໃຫ້ກັບ \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
ໃຊ້ການລະບຸຕົວຕົນທິດສະດີປີຕາກໍຣັສ.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
ຂຽນຂໍ້ຈຳກັດຄືນໃໝ່.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
ຂໍ້ຈຳກັດ \lim_{A\to 0}\frac{\sin(A)}{A} ແມ່ນ 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
ໃຊ້ຂໍ້ເທັດຈິງທີ່ \frac{\sin(h)}{\cos(h)+1} ແມ່ນຕໍ່ເນື່ອງທີ່ 0.
-\sin(A)
ການແທນສຳລັບ 0 ໄປເປັນນິພົດ \cos(A)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(A).
ຕົວຢ່າງ
ສະສົມQuadratic
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
ສະສົມເສັ້ນ
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ສະສົມພ້ອມກັນ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ຄວາມແຕກແຍກ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ການຮວມ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ຂີດຈໍາກັດ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}