Skip ໄປຫາເນື້ອຫາຫຼັກ
ຕົວປະກອບ
Tick mark Image
ປະເມີນ
Tick mark Image
Graph

ບັນຫາທີ່ຄ້າຍຄືກັນຈາກWeb Search

ແບ່ງປັນ

2\left(x^{2}-4x-5\right)
ຕົວປະກອບຈາກ 2.
a+b=-4 ab=1\left(-5\right)=-5
ພິຈາລະນາ x^{2}-4x-5. ຕົວຫານນິພົດຕາມການຈັດກຸ່ມ. ທຳອິດນິພົດຕ້ອງຖືກຂຽນຄືນໃໝ່ເປັນ x^{2}+ax+bx-5. ເພື່ອຊອກຫາ a ແລະ b, ໃຫ້ຕັ້ງຄ່າລະບົບເພື່ອຖືກແກ້ໄຂ.
a=-5 b=1
ເນື່ອງຈາກ ab ເປັນຄ່າລົບ, a ແລະ b ຈຶ່ງມີສັນຍາລັກກົງກັນຂ້າມ. ເນື່ອງຈາກ a+b ເປັນຄ່າລົບ, ຈຳນວນລົບມີຄ່າສົມບູນສູງກວ່າຈຳນວນບວກ. ຄູ່ດັ່ງກ່າວເປັນທາງອອກລະບົບ.
\left(x^{2}-5x\right)+\left(x-5\right)
ຂຽນ x^{2}-4x-5 ຄືນໃໝ່ເປັນ \left(x^{2}-5x\right)+\left(x-5\right).
x\left(x-5\right)+x-5
ແຍກ x ອອກໃນ x^{2}-5x.
\left(x-5\right)\left(x+1\right)
ແຍກຄຳທົ່ວໄປ x-5 ໂດຍການໃຊ້ຄຸນສົມບັດການແຈກຢາຍ.
2\left(x-5\right)\left(x+1\right)
ຂຽນນິພົດແບບມີປັດໃຈສົມບູນ.
2x^{2}-8x-10=0
Quadratic polynomial ສາມາດຫານໄດ້ໂດຍໃຊ້ການປ່ຽນແປງ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ເຊິ່ງ x_{1} ແລະ x_{2} ແມ່ນວິທີແກ້ໄຂສົມຜົນ quadratic ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-10\right)}}{2\times 2}
ສົມຜົນທັງໝົດຂອງແບບຟອມ ax^{2}+bx+c=0 ສາມາດຖືກແກ້ໄດ້ໂດຍໃຊ້ສູດຄຳນວນສົມຜົນສອງຊັ້ນ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ສູດຄຳນວນສົມຜົນສອງຊັ້ນຈະໃຫ້ວິທີແກ້ສອງແບບ, ໜຶ່ງແມ່ນເມື່ອ ± ເປັນການບວກ ແລະ ອີກສອງແມ່ນເມື່ອມັນເປັນການລົບ.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-10\right)}}{2\times 2}
ຮາກທີ່ສອງຂອງຄ່າສະເລ່ຍ -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-10\right)}}{2\times 2}
ຄູນ -4 ໃຫ້ກັບ 2.
x=\frac{-\left(-8\right)±\sqrt{64+80}}{2\times 2}
ຄູນ -8 ໃຫ້ກັບ -10.
x=\frac{-\left(-8\right)±\sqrt{144}}{2\times 2}
ເພີ່ມ 64 ໃສ່ 80.
x=\frac{-\left(-8\right)±12}{2\times 2}
ເອົາຮາກຂັ້ນສອງຂອງ 144.
x=\frac{8±12}{2\times 2}
ຈຳນວນກົງກັນຂ້າມຂອງ -8 ແມ່ນ 8.
x=\frac{8±12}{4}
ຄູນ 2 ໃຫ້ກັບ 2.
x=\frac{20}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{8±12}{4} ເມື່ອ ± ບວກ. ເພີ່ມ 8 ໃສ່ 12.
x=5
ຫານ 20 ດ້ວຍ 4.
x=-\frac{4}{4}
ຕອນນີ້ໃຫ້ແກ້ສົມຜົນ x=\frac{8±12}{4} ເມື່ອ ± ເປັນລົບ. ລົບ 12 ອອກຈາກ 8.
x=-1
ຫານ -4 ດ້ວຍ 4.
2x^{2}-8x-10=2\left(x-5\right)\left(x-\left(-1\right)\right)
ຫານສົມຜົນຕົ້ນສະບັບໂດຍໃຊ້ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). ແທນ 5 ເປັນ x_{1} ແລະ -1 ເປັນ x_{2}.
2x^{2}-8x-10=2\left(x-5\right)\left(x+1\right)
ເຮັດໃຫ້ນິພົດທັງໝົດຂອງຮູບແບບ p-\left(-q\right) ເປັນ p+q.