x खातीर सोडोवचें
x=-1
x=10
ग्राफ
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
a+b=-9 ab=-10
गणीत सोडोवंक, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) सिध्दांत वापरून x^{2}-9x-10 घटक. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
1,-10 2,-5
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b नकारात्मक आसा, नकारात्मक संख्येक सकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -10.
1-10=-9 2-5=-3
दरेक जोडयेखातीर गणीत मेजचें.
a=-10 b=1
जोडयेचें उत्तर जें दिता गणीत -9.
\left(x-10\right)\left(x+1\right)
\left(x+a\right)\left(x+b\right) मेळिल्ले मोलां वापरून फॅक्टर केल्लें एक्सप्रेशन परत बरोवचें.
x=10 x=-1
गणीताचें उत्तर सोदूंक, सोडोवचें x-10=0 आनी x+1=0.
a+b=-9 ab=1\left(-10\right)=-10
गणीत सोडोवंक, गट करून दाव्या हातान घटक. पयलीं, दावी बाजू x^{2}+ax+bx-10 म्हूण परत बरोवंक जाय आसा. a आनी b मेळोवंक, सोडोवंक यंत्रणां मांडची.
1,-10 2,-5
ab नकारात्मक आसा देखून, a आनी b क विरूध्द चिन्हां आसात. a+b नकारात्मक आसा, नकारात्मक संख्येक सकारात्मक संख्येच्या परस चड निव्वळ मोल आसता. गुणक दिवपी तत्सम जोडयांची सुची -10.
1-10=-9 2-5=-3
दरेक जोडयेखातीर गणीत मेजचें.
a=-10 b=1
जोडयेचें उत्तर जें दिता गणीत -9.
\left(x^{2}-10x\right)+\left(x-10\right)
x^{2}-9x-10 हें \left(x^{2}-10x\right)+\left(x-10\right) बरोवचें.
x\left(x-10\right)+x-10
फॅक्टर आवट x त x^{2}-10x.
\left(x-10\right)\left(x+1\right)
फॅक्टर आवट सामान्य शब्द x-10 वितरीत गूणधर्म वापरून.
x=10 x=-1
गणीताचें उत्तर सोदूंक, सोडोवचें x-10=0 आनी x+1=0.
x^{2}-9x-10=0
फॉर्म ax^{2}+bx+c=0 चीं सगळीं समिकरणां क्वॉड्रेटिक सिध्दांत: \frac{-b±\sqrt{b^{2}-4ac}}{2a} वापरून सोडोवंक शकतात. क्वॉड्रेटिक सिध्दांत दोन सोडोवणी दितात, एक जेन्ना ± बेरीज आसा आनी एक जेन्ना ती वजा आसता.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-10\right)}}{2}
हें समिकरण प्रमाणित पद्दतीन आसा: ax^{2}+bx+c=0. क्वॉड्रेटिक सिध्दांत \frac{-b±\sqrt{b^{2}-4ac}}{2a} त a खातीर 1, b खातीर -9 आनी c खातीर -10 बदली घेवचे.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-10\right)}}{2}
-9 वर्गमूळ.
x=\frac{-\left(-9\right)±\sqrt{81+40}}{2}
-10क -4 फावटी गुणचें.
x=\frac{-\left(-9\right)±\sqrt{121}}{2}
40 कडेन 81 ची बेरीज करची.
x=\frac{-\left(-9\right)±11}{2}
121 चें वर्गमूळ घेवचें.
x=\frac{9±11}{2}
-9 च्या विरुध्दार्थी अंक 9 आसा.
x=\frac{20}{2}
जेन्ना ± अदीक आस्ता तेन्ना समिकरण x=\frac{9±11}{2} सोडोवचें. 11 कडेन 9 ची बेरीज करची.
x=10
2 न20 क भाग लावचो.
x=-\frac{2}{2}
जेन्ना ± वजा आस्ता तेन्ना समिकरण x=\frac{9±11}{2} सोडोवचें. 9 तल्यान 11 वजा करची.
x=-1
2 न-2 क भाग लावचो.
x=10 x=-1
समिकरण आतां सुटावें जालें.
x^{2}-9x-10=0
ह्या सारकें क्वॉड्रेटिक समिकरण वर्ग पुराय करून सोडोवंक शकतात. वर्ग पुराय करूंक, समिकरण x^{2}+bx=c स्वरूपांत आसूंक जाय.
x^{2}-9x-10-\left(-10\right)=-\left(-10\right)
समिकरणाच्या दोनूय कुशींतल्यान 10 ची बेरीज करची.
x^{2}-9x=-\left(-10\right)
तातूंतल्यानूच -10 वजा केल्यार 0 उरता.
x^{2}-9x=10
0 तल्यान -10 वजा करची.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=10+\left(-\frac{9}{2}\right)^{2}
-\frac{9}{2} मेळपा खातीर 2 न x संज्ञेचो कोऐफिशियंट आशिल्लो -9 क भाग लावचो. मागीर समिकरणाच्या दोनूय कुशींनी -\frac{9}{2} च्या वर्गाची बेरीज करची. हो पांवडो समिकरणाचे दावे कुशीक एक जुस्त वर्ग करता.
x^{2}-9x+\frac{81}{4}=10+\frac{81}{4}
अपूर्णांकांचो गणक आनी भाजक हांकां दोनांकूय वर्गमूळ लावन -\frac{9}{2} क वर्गमूळ लावचें.
x^{2}-9x+\frac{81}{4}=\frac{121}{4}
\frac{81}{4} कडेन 10 ची बेरीज करची.
\left(x-\frac{9}{2}\right)^{2}=\frac{121}{4}
गुणकपद x^{2}-9x+\frac{81}{4}. सामान्यपणान, जेन्नाx^{2}+bx+c अचूक वर्ग आसात, तो सदांच\left(x+\frac{b}{2}\right)^{2}गुणकपद करूं येता.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
समिकरणाच्या दोनूय कुशींनी वर्गमूळ काडचो.
x-\frac{9}{2}=\frac{11}{2} x-\frac{9}{2}=-\frac{11}{2}
सोंपें करचें.
x=10 x=-1
समिकरणाच्या दोनूय कुशींतल्यान \frac{9}{2} ची बेरीज करची.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}