मुखेल आशय वगडाय
x_2 खातीर सोडोवचें
Tick mark Image
ग्राफ

वांटचें

x ^ {2} = 9 + {(17 - x 2 \sqrt{x})} \cdot {({(7 - x - 2 \sqrt{x})} - 6 \cdot 0.15643446504023092)}
समस्येंत आशिल्लीं त्रिकोणमिती कार्यां मूल्यांकीत करचीं
x^{2}=9+\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}-0.93860679024138552\right)
0.93860679024138552 मेळोवंक 6 आनी 0.15643446504023092 गुणचें.
x^{2}=9+\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}\right)-0.93860679024138552\left(17-x_{2}\sqrt{x}\right)
7-x-2\sqrt{x}-0.93860679024138552 न 17-x_{2}\sqrt{x} गुणपाक विभाजक विशमाचो वापर करचो.
9+\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}\right)-0.93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}
कुशी हाणच्यो ताका लागून बरोबर चिन्नाच्या दाव्यान सगळी विशम संज्ञा येतली.
\left(17-x_{2}\sqrt{x}\right)\left(7-x-2\sqrt{x}\right)-0.93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}-9
दोनूय कुशींतल्यान 9 वजा करचें.
119-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}\left(\sqrt{x}\right)^{2}-0.93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}-9
7-x-2\sqrt{x} न 17-x_{2}\sqrt{x} गुणपाक विभाजक विशमाचो वापर करचो.
119-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x-0.93860679024138552\left(17-x_{2}\sqrt{x}\right)=x^{2}-9
x मेळोवंक 2 चो \sqrt{x} पॉवर मेजचो.
119-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x-15.95631543410355384+0.93860679024138552x_{2}\sqrt{x}=x^{2}-9
17-x_{2}\sqrt{x} न -0.93860679024138552 गुणपाक विभाजक विशमाचो वापर करचो.
103.04368456589644616-17x-34\sqrt{x}-7x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x+0.93860679024138552x_{2}\sqrt{x}=x^{2}-9
103.04368456589644616 मेळोवंक 119 आनी 15.95631543410355384 वजा करचे.
103.04368456589644616-17x-34\sqrt{x}-6.06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-9
-6.06139320975861448x_{2}\sqrt{x} मेळोवंक -7x_{2}\sqrt{x} आनी 0.93860679024138552x_{2}\sqrt{x} एकठांय करचें.
-17x-34\sqrt{x}-6.06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-9-103.04368456589644616
दोनूय कुशींतल्यान 103.04368456589644616 वजा करचें.
-17x-34\sqrt{x}-6.06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-112.04368456589644616
-112.04368456589644616 मेळोवंक -9 आनी 103.04368456589644616 वजा करचे.
-34\sqrt{x}-6.06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-112.04368456589644616+17x
दोनूय वटांनी 17x जोडचे.
-6.06139320975861448x_{2}\sqrt{x}+xx_{2}\sqrt{x}+2x_{2}x=x^{2}-112.04368456589644616+17x+34\sqrt{x}
दोनूय वटांनी 34\sqrt{x} जोडचे.
\left(-6.06139320975861448\sqrt{x}+x\sqrt{x}+2x\right)x_{2}=x^{2}-112.04368456589644616+17x+34\sqrt{x}
x_{2} आसपी सगळ्यो संज्ञा एकठांय करच्यो.
\left(\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}\right)x_{2}=x^{2}+17x+34\sqrt{x}-112.04368456589644616
समिकरण प्रमाणिक स्वरूपांत आसा.
\frac{\left(\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}\right)x_{2}}{\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}}=\frac{x^{2}+17x+34\sqrt{x}-112.04368456589644616}{\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}}
दोनुय कुशींक -6.06139320975861448\sqrt{x}+x\sqrt{x}+2x न भाग लावचो.
x_{2}=\frac{x^{2}+17x+34\sqrt{x}-112.04368456589644616}{\sqrt{x}x+2x-\frac{75767415121982681\sqrt{x}}{12500000000000000}}
-6.06139320975861448\sqrt{x}+x\sqrt{x}+2x वरवीं भागाकार केल्यार -6.06139320975861448\sqrt{x}+x\sqrt{x}+2x वरवीं केल्लो गुणाकार काडटा.
x_{2}=\frac{x^{2}+17x+34\sqrt{x}-112.04368456589644616}{\sqrt{x}\left(x+2\sqrt{x}-6.06139320975861448\right)}
-6.06139320975861448\sqrt{x}+x\sqrt{x}+2x नx^{2}-112.04368456589644616+17x+34\sqrt{x} क भाग लावचो.