z खातीर सोडोवचें
z=\frac{7}{9}+\frac{11}{3x}+\frac{13}{x^{2}}
x\neq 0
x खातीर सोडोवचें (जटील सोल्यूशन)
\left\{\begin{matrix}x=\frac{3\left(3\sqrt{52z-27}+11\right)}{2\left(9z-7\right)}\text{; }x=\frac{3\left(-3\sqrt{52z-27}+11\right)}{2\left(9z-7\right)}\text{, }&z\neq \frac{7}{9}\\x=-\frac{39}{11}\approx -3.545454545\text{, }&z=\frac{7}{9}\end{matrix}\right.
x खातीर सोडोवचें
\left\{\begin{matrix}x=\frac{3\left(3\sqrt{52z-27}+11\right)}{2\left(9z-7\right)}\text{; }x=\frac{3\left(-3\sqrt{52z-27}+11\right)}{2\left(9z-7\right)}\text{, }&z\neq \frac{7}{9}\text{ and }z\geq \frac{27}{52}\\x=-\frac{39}{11}\approx -3.545454545\text{, }&z=\frac{7}{9}\end{matrix}\right.
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
9zx^{2}-33x-117=7x^{2}
दोनूय वटांनी 7x^{2} जोडचे. किदेंय अदीक शुन्य तें दितां.
9zx^{2}-117=7x^{2}+33x
दोनूय वटांनी 33x जोडचे.
9zx^{2}=7x^{2}+33x+117
दोनूय वटांनी 117 जोडचे.
9x^{2}z=7x^{2}+33x+117
समिकरण प्रमाणिक स्वरूपांत आसा.
\frac{9x^{2}z}{9x^{2}}=\frac{7x^{2}+33x+117}{9x^{2}}
दोनुय कुशींक 9x^{2} न भाग लावचो.
z=\frac{7x^{2}+33x+117}{9x^{2}}
9x^{2} वरवीं भागाकार केल्यार 9x^{2} वरवीं केल्लो गुणाकार काडटा.
z=\frac{7}{9}+\frac{\frac{11x}{3}+13}{x^{2}}
9x^{2} न7x^{2}+33x+117 क भाग लावचो.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}