मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
विस्तार करचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

16-\frac{1}{2}\left(8-t\right)\left(-\frac{5}{4}t+10\right)
-\frac{1}{2} मेळोवंक -1 आनी \frac{1}{2} गुणचें.
16+\left(-\frac{1}{2}\times 8-\frac{1}{2}\left(-1\right)t\right)\left(-\frac{5}{4}t+10\right)
8-t न -\frac{1}{2} गुणपाक विभाजक विशमाचो वापर करचो.
16+\left(\frac{-8}{2}-\frac{1}{2}\left(-1\right)t\right)\left(-\frac{5}{4}t+10\right)
एकोडो अपूर्णांक म्हूण -\frac{1}{2}\times 8 स्पश्ट करचें.
16+\left(-4-\frac{1}{2}\left(-1\right)t\right)\left(-\frac{5}{4}t+10\right)
-4 मेळोवंक -8 क 2 न भाग लावचो.
16+\left(-4+\frac{1}{2}t\right)\left(-\frac{5}{4}t+10\right)
\frac{1}{2} मेळोवंक -\frac{1}{2} आनी -1 गुणचें.
16-4\left(-\frac{5}{4}\right)t-40+\frac{1}{2}t\left(-\frac{5}{4}\right)t+\frac{1}{2}t\times 10
-4+\frac{1}{2}tच्या प्रत्येकी टर्माक -\frac{5}{4}t+10 च्या प्रत्येकी टर्मान गुणाकार करून वितरक गुणधर्म लागू करचो.
16-4\left(-\frac{5}{4}\right)t-40+\frac{1}{2}t^{2}\left(-\frac{5}{4}\right)+\frac{1}{2}t\times 10
t^{2} मेळोवंक t आनी t गुणचें.
16+5t-40+\frac{1}{2}t^{2}\left(-\frac{5}{4}\right)+\frac{1}{2}t\times 10
-\frac{5}{4}क -4 फावटी गुणचें.
16+5t-40+\frac{1\left(-5\right)}{2\times 4}t^{2}+\frac{1}{2}t\times 10
न्युमरेटर वेळा न्युमरेटराक आनी डिनोमिनेटर वेळा डिनोमिनेटराक गुणून -\frac{5}{4} वेळा \frac{1}{2} गुणचें.
16+5t-40+\frac{-5}{8}t^{2}+\frac{1}{2}t\times 10
फ्रॅक्शन \frac{1\left(-5\right)}{2\times 4} त गुणाकार करचे.
16+5t-40-\frac{5}{8}t^{2}+\frac{1}{2}t\times 10
नकारात्मक चिन्न वगळावंन अपुर्णांक \frac{-5}{8} हो -\frac{5}{8} भशेन परत बरोवंक शकतात.
16+5t-40-\frac{5}{8}t^{2}+\frac{10}{2}t
\frac{10}{2} मेळोवंक \frac{1}{2} आनी 10 गुणचें.
16+5t-40-\frac{5}{8}t^{2}+5t
5 मेळोवंक 10 क 2 न भाग लावचो.
16+10t-40-\frac{5}{8}t^{2}
10t मेळोवंक 5t आनी 5t एकठांय करचें.
-24+10t-\frac{5}{8}t^{2}
-24 मेळोवंक 16 आनी 40 वजा करचे.
16-\frac{1}{2}\left(8-t\right)\left(-\frac{5}{4}t+10\right)
-\frac{1}{2} मेळोवंक -1 आनी \frac{1}{2} गुणचें.
16+\left(-\frac{1}{2}\times 8-\frac{1}{2}\left(-1\right)t\right)\left(-\frac{5}{4}t+10\right)
8-t न -\frac{1}{2} गुणपाक विभाजक विशमाचो वापर करचो.
16+\left(\frac{-8}{2}-\frac{1}{2}\left(-1\right)t\right)\left(-\frac{5}{4}t+10\right)
एकोडो अपूर्णांक म्हूण -\frac{1}{2}\times 8 स्पश्ट करचें.
16+\left(-4-\frac{1}{2}\left(-1\right)t\right)\left(-\frac{5}{4}t+10\right)
-4 मेळोवंक -8 क 2 न भाग लावचो.
16+\left(-4+\frac{1}{2}t\right)\left(-\frac{5}{4}t+10\right)
\frac{1}{2} मेळोवंक -\frac{1}{2} आनी -1 गुणचें.
16-4\left(-\frac{5}{4}\right)t-40+\frac{1}{2}t\left(-\frac{5}{4}\right)t+\frac{1}{2}t\times 10
-4+\frac{1}{2}tच्या प्रत्येकी टर्माक -\frac{5}{4}t+10 च्या प्रत्येकी टर्मान गुणाकार करून वितरक गुणधर्म लागू करचो.
16-4\left(-\frac{5}{4}\right)t-40+\frac{1}{2}t^{2}\left(-\frac{5}{4}\right)+\frac{1}{2}t\times 10
t^{2} मेळोवंक t आनी t गुणचें.
16+5t-40+\frac{1}{2}t^{2}\left(-\frac{5}{4}\right)+\frac{1}{2}t\times 10
-\frac{5}{4}क -4 फावटी गुणचें.
16+5t-40+\frac{1\left(-5\right)}{2\times 4}t^{2}+\frac{1}{2}t\times 10
न्युमरेटर वेळा न्युमरेटराक आनी डिनोमिनेटर वेळा डिनोमिनेटराक गुणून -\frac{5}{4} वेळा \frac{1}{2} गुणचें.
16+5t-40+\frac{-5}{8}t^{2}+\frac{1}{2}t\times 10
फ्रॅक्शन \frac{1\left(-5\right)}{2\times 4} त गुणाकार करचे.
16+5t-40-\frac{5}{8}t^{2}+\frac{1}{2}t\times 10
नकारात्मक चिन्न वगळावंन अपुर्णांक \frac{-5}{8} हो -\frac{5}{8} भशेन परत बरोवंक शकतात.
16+5t-40-\frac{5}{8}t^{2}+\frac{10}{2}t
\frac{10}{2} मेळोवंक \frac{1}{2} आनी 10 गुणचें.
16+5t-40-\frac{5}{8}t^{2}+5t
5 मेळोवंक 10 क 2 न भाग लावचो.
16+10t-40-\frac{5}{8}t^{2}
10t मेळोवंक 5t आनी 5t एकठांय करचें.
-24+10t-\frac{5}{8}t^{2}
-24 मेळोवंक 16 आनी 40 वजा करचे.