मुखेल आशय वगडाय
मूल्यांकन करचें
Tick mark Image
विस्तार करचो
Tick mark Image

वॅब सोदांतल्यान समान समस्या

वांटचें

\left(x-\left(-6-i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
\left(x-\left(-1+3i\right)\right)^{2} मेळोवंक x-\left(-1+3i\right) आनी x-\left(-1+3i\right) गुणचें.
\left(x+\left(6+i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
-6-i च्या विरुध्दार्थी अंक 6+i आसा.
\left(x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
x-\left(-6+i\right) न x+\left(6+i\right) गुणपाक विभाजक विशमाचो वापर करचो.
x\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
\left(x-\left(-1+3i\right)\right)^{2} न x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right) गुणपाक विभाजक विशमाचो वापर करचो.
x\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
6-i मेळोवंक -1 आनी -6+i गुणचें.
x\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
1-3i मेळोवंक -1 आनी -1+3i गुणचें.
x\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
बायनोमियल प्रमेयाचो वापर करून \left(a+b\right)^{2}=a^{2}+2ab+b^{2} विस्तारावचें \left(x+\left(1-3i\right)\right)^{2}.
\left(x^{2}+\left(6-i\right)x\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
x+\left(6-i\right) न x गुणपाक विभाजक विशमाचो वापर करचो.
x^{4}+\left(2-6i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-i\right)x^{3}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
x^{2}+\left(6-i\right)xच्या प्रत्येकी टर्माक x^{2}+\left(2-6i\right)x+\left(-8-6i\right) च्या प्रत्येकी टर्मान गुणाकार करून वितरक गुणधर्म लागू करचो.
x^{4}+\left(8-7i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
\left(8-7i\right)x^{3} मेळोवंक \left(2-6i\right)x^{3} आनी \left(6-i\right)x^{3} एकठांय करचें.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
\left(-2-44i\right)x^{2} मेळोवंक \left(-8-6i\right)x^{2} आनी \left(6-38i\right)x^{2} एकठांय करचें.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
6-i मेळोवंक -1 आनी -6+i गुणचें.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}
1-3i मेळोवंक -1 आनी -1+3i गुणचें.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
बायनोमियल प्रमेयाचो वापर करून \left(a+b\right)^{2}=a^{2}+2ab+b^{2} विस्तारावचें \left(x+\left(1-3i\right)\right)^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(\left(6+i\right)x+37\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
x+\left(6-i\right) न 6+i गुणपाक विभाजक विशमाचो वापर करचो.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(18-34i\right)x^{2}+\left(-42-44i\right)x+37x^{2}+\left(74-222i\right)x+\left(-296-222i\right)
\left(6+i\right)x+37च्या प्रत्येकी टर्माक x^{2}+\left(2-6i\right)x+\left(-8-6i\right) च्या प्रत्येकी टर्मान गुणाकार करून वितरक गुणधर्म लागू करचो.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(-42-44i\right)x+\left(74-222i\right)x+\left(-296-222i\right)
\left(55-34i\right)x^{2} मेळोवंक \left(18-34i\right)x^{2} आनी 37x^{2} एकठांय करचें.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
\left(32-266i\right)x मेळोवंक \left(-42-44i\right)x आनी \left(74-222i\right)x एकठांय करचें.
x^{4}+\left(14-6i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
\left(14-6i\right)x^{3} मेळोवंक \left(8-7i\right)x^{3} आनी \left(6+i\right)x^{3} एकठांय करचें.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-54-28i\right)x+\left(32-266i\right)x+\left(-296-222i\right)
\left(53-78i\right)x^{2} मेळोवंक \left(-2-44i\right)x^{2} आनी \left(55-34i\right)x^{2} एकठांय करचें.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-22-294i\right)x+\left(-296-222i\right)
\left(-22-294i\right)x मेळोवंक \left(-54-28i\right)x आनी \left(32-266i\right)x एकठांय करचें.
\left(x-\left(-6-i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
\left(x-\left(-1+3i\right)\right)^{2} मेळोवंक x-\left(-1+3i\right) आनी x-\left(-1+3i\right) गुणचें.
\left(x+\left(6+i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
-6-i च्या विरुध्दार्थी अंक 6+i आसा.
\left(x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
x-\left(-6+i\right) न x+\left(6+i\right) गुणपाक विभाजक विशमाचो वापर करचो.
x\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
\left(x-\left(-1+3i\right)\right)^{2} न x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right) गुणपाक विभाजक विशमाचो वापर करचो.
x\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
6-i मेळोवंक -1 आनी -6+i गुणचें.
x\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
1-3i मेळोवंक -1 आनी -1+3i गुणचें.
x\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
बायनोमियल प्रमेयाचो वापर करून \left(a+b\right)^{2}=a^{2}+2ab+b^{2} विस्तारावचें \left(x+\left(1-3i\right)\right)^{2}.
\left(x^{2}+\left(6-i\right)x\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
x+\left(6-i\right) न x गुणपाक विभाजक विशमाचो वापर करचो.
x^{4}+\left(2-6i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-i\right)x^{3}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
x^{2}+\left(6-i\right)xच्या प्रत्येकी टर्माक x^{2}+\left(2-6i\right)x+\left(-8-6i\right) च्या प्रत्येकी टर्मान गुणाकार करून वितरक गुणधर्म लागू करचो.
x^{4}+\left(8-7i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
\left(8-7i\right)x^{3} मेळोवंक \left(2-6i\right)x^{3} आनी \left(6-i\right)x^{3} एकठांय करचें.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
\left(-2-44i\right)x^{2} मेळोवंक \left(-8-6i\right)x^{2} आनी \left(6-38i\right)x^{2} एकठांय करचें.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
6-i मेळोवंक -1 आनी -6+i गुणचें.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}
1-3i मेळोवंक -1 आनी -1+3i गुणचें.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
बायनोमियल प्रमेयाचो वापर करून \left(a+b\right)^{2}=a^{2}+2ab+b^{2} विस्तारावचें \left(x+\left(1-3i\right)\right)^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(\left(6+i\right)x+37\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
x+\left(6-i\right) न 6+i गुणपाक विभाजक विशमाचो वापर करचो.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(18-34i\right)x^{2}+\left(-42-44i\right)x+37x^{2}+\left(74-222i\right)x+\left(-296-222i\right)
\left(6+i\right)x+37च्या प्रत्येकी टर्माक x^{2}+\left(2-6i\right)x+\left(-8-6i\right) च्या प्रत्येकी टर्मान गुणाकार करून वितरक गुणधर्म लागू करचो.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(-42-44i\right)x+\left(74-222i\right)x+\left(-296-222i\right)
\left(55-34i\right)x^{2} मेळोवंक \left(18-34i\right)x^{2} आनी 37x^{2} एकठांय करचें.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
\left(32-266i\right)x मेळोवंक \left(-42-44i\right)x आनी \left(74-222i\right)x एकठांय करचें.
x^{4}+\left(14-6i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
\left(14-6i\right)x^{3} मेळोवंक \left(8-7i\right)x^{3} आनी \left(6+i\right)x^{3} एकठांय करचें.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-54-28i\right)x+\left(32-266i\right)x+\left(-296-222i\right)
\left(53-78i\right)x^{2} मेळोवंक \left(-2-44i\right)x^{2} आनी \left(55-34i\right)x^{2} एकठांय करचें.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-22-294i\right)x+\left(-296-222i\right)
\left(-22-294i\right)x मेळोवंक \left(-54-28i\right)x आनी \left(32-266i\right)x एकठांय करचें.