मूल्यांकन करचें
\frac{17}{8}=2.125
गुणकपद
\frac{17}{2 ^ {3}} = 2\frac{1}{8} = 2.125
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\frac{\left(-\frac{1}{4}\right)^{2}+\left(2-\frac{1}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\frac{\left(\frac{17}{2}\right)^{4}}{\left(\frac{17}{2}\right)^{3}}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
समान बेझीच्या पॉवरांक भाग लावंक, गणक निदर्शकांतल्यान भाजक निदर्शक वजा करचो. 2 मेळोवंक 3 तल्यान 1 वजा करचो.
\frac{\left(-\frac{1}{4}\right)^{2}+\left(2-\frac{1}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
समान बेझीच्या पॉवरांक भाग लावंक, गणक निदर्शकांतल्यान भाजक निदर्शक वजा करचो. 1 मेळोवंक 4 तल्यान 3 वजा करचो.
\frac{\frac{1}{16}+\left(2-\frac{1}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
\frac{1}{16} मेळोवंक 2 चो -\frac{1}{4} पॉवर मेजचो.
\frac{\frac{1}{16}+\left(\frac{3}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
\frac{3}{2} मेळोवंक 2 आनी \frac{1}{2} वजा करचे.
\frac{\frac{1}{16}+\frac{81}{16}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
\frac{81}{16} मेळोवंक 4 चो \frac{3}{2} पॉवर मेजचो.
\frac{\frac{1}{16}+\frac{81}{16}\times \left(\frac{4}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
\frac{4}{9} मेळोवंक 1 आनी \frac{5}{9} वजा करचे.
\frac{\frac{1}{16}+\frac{81}{16}\times \frac{16}{81}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
\frac{16}{81} मेळोवंक 2 चो \frac{4}{9} पॉवर मेजचो.
\frac{\frac{1}{16}+1}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
1 मेळोवंक \frac{81}{16} आनी \frac{16}{81} गुणचें.
\frac{\frac{17}{16}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
\frac{17}{16} मेळोवंक \frac{1}{16} आनी 1 ची बेरीज करची.
\frac{\frac{17}{16}}{\frac{17}{2}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
\frac{17}{2} मेळोवंक 1 चो \frac{17}{2} पॉवर मेजचो.
\frac{\frac{17}{16}}{\frac{17}{2}+\frac{3}{2}\times 1-1+\frac{1}{4}}\times \frac{37}{2}
1 मेळोवंक 2 चो -1 पॉवर मेजचो.
\frac{\frac{17}{16}}{\frac{17}{2}+\frac{3}{2}-1+\frac{1}{4}}\times \frac{37}{2}
\frac{3}{2} मेळोवंक \frac{3}{2} आनी 1 गुणचें.
\frac{\frac{17}{16}}{10-1+\frac{1}{4}}\times \frac{37}{2}
10 मेळोवंक \frac{17}{2} आनी \frac{3}{2} ची बेरीज करची.
\frac{\frac{17}{16}}{9+\frac{1}{4}}\times \frac{37}{2}
9 मेळोवंक 10 आनी 1 वजा करचे.
\frac{\frac{17}{16}}{\frac{37}{4}}\times \frac{37}{2}
\frac{37}{4} मेळोवंक 9 आनी \frac{1}{4} ची बेरीज करची.
\frac{17}{16}\times \frac{4}{37}\times \frac{37}{2}
\frac{37}{4} च्या पुरकाक \frac{17}{16} गुणून \frac{37}{4} न \frac{17}{16} क भाग लावचो.
\frac{17}{148}\times \frac{37}{2}
\frac{17}{148} मेळोवंक \frac{17}{16} आनी \frac{4}{37} गुणचें.
\frac{17}{8}
\frac{17}{8} मेळोवंक \frac{17}{148} आनी \frac{37}{2} गुणचें.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}