मूल्यांकन करचें
\frac{7\left(xy\right)^{3}}{27}
विस्तार करचो
\frac{7\left(xy\right)^{3}}{27}
वांटचें
क्लिपबोर्डाचेर नक्कल केलां
\left(\frac{\left(-\frac{5}{6}x^{2}y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
-\frac{5}{6}x^{2}y^{2} मेळोवंक \frac{2}{3}x^{2}y^{2} आनी -\frac{3}{2}x^{2}y^{2} एकठांय करचें.
\left(\frac{\left(-\frac{5}{6}\right)^{2}\left(x^{2}\right)^{2}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\left(-\frac{5}{6}x^{2}y^{2}\right)^{2} विस्तारीत करचो.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{25}{36} मेळोवंक 2 चो -\frac{5}{6} पॉवर मेजचो.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
-\frac{5}{8}xy मेळोवंक \frac{1}{4}xy आनी -\frac{7}{8}xy एकठांय करचें.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}\right)^{2}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\left(-\frac{5}{8}xy\right)^{2} विस्तारीत करचो.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\frac{25}{64}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{25}{64} मेळोवंक 2 चो -\frac{5}{8} पॉवर मेजचो.
\left(\frac{\frac{25}{36}x^{2}y^{2}}{\frac{25}{64}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय x^{2}y^{2} रद्द करचो.
\left(\frac{\frac{25}{36}x^{2}y^{2}\times 64}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{25}{64} च्या पुरकाक \frac{25}{36}x^{2}y^{2} गुणून \frac{25}{64} न \frac{25}{36}x^{2}y^{2} क भाग लावचो.
\left(\frac{\frac{400}{9}x^{2}y^{2}}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{400}{9} मेळोवंक \frac{25}{36} आनी 64 गुणचें.
\left(\frac{16}{9}x^{2}y^{2}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{16}{9}x^{2}y^{2} मेळोवंक \frac{400}{9}x^{2}y^{2} क 25 न भाग लावचो.
\left(\frac{16}{9}x^{2}y^{2}-\frac{3}{2}x^{2}y^{2}\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{3}{2}x^{2}y^{2} मेळोवंक \frac{5}{3}x^{2}y^{2} आनी -\frac{1}{6}x^{2}y^{2} एकठांय करचें.
\frac{5}{18}x^{2}y^{2}\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{5}{18}x^{2}y^{2} मेळोवंक \frac{16}{9}x^{2}y^{2} आनी -\frac{3}{2}x^{2}y^{2} एकठांय करचें.
\frac{5}{18}x^{2}y^{2}\times \frac{14}{15}xy
\frac{14}{15}xy मेळोवंक \frac{4}{3}xy आनी -\frac{2}{5}xy एकठांय करचें.
\frac{7}{27}x^{2}y^{2}xy
\frac{7}{27} मेळोवंक \frac{5}{18} आनी \frac{14}{15} गुणचें.
\frac{7}{27}x^{3}y^{2}y
समान मूळाचो पावर गुणूंक, ताचो ऍक्सपोनंट जोडचो. 3 मेळोवंक 2 आनी 1 जोडचो.
\frac{7}{27}x^{3}y^{3}
समान मूळाचो पावर गुणूंक, ताचो ऍक्सपोनंट जोडचो. 3 मेळोवंक 2 आनी 1 जोडचो.
\left(\frac{\left(-\frac{5}{6}x^{2}y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
-\frac{5}{6}x^{2}y^{2} मेळोवंक \frac{2}{3}x^{2}y^{2} आनी -\frac{3}{2}x^{2}y^{2} एकठांय करचें.
\left(\frac{\left(-\frac{5}{6}\right)^{2}\left(x^{2}\right)^{2}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\left(-\frac{5}{6}x^{2}y^{2}\right)^{2} विस्तारीत करचो.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
एक पॉवर दुसऱ्या पॉवरान उखलून धरपाक, निदर्शकांक गुणचें. 4 मेळोवंक 2 तल्यान 2 गुणचो.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{25}{36} मेळोवंक 2 चो -\frac{5}{6} पॉवर मेजचो.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
-\frac{5}{8}xy मेळोवंक \frac{1}{4}xy आनी -\frac{7}{8}xy एकठांय करचें.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}\right)^{2}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\left(-\frac{5}{8}xy\right)^{2} विस्तारीत करचो.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\frac{25}{64}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{25}{64} मेळोवंक 2 चो -\frac{5}{8} पॉवर मेजचो.
\left(\frac{\frac{25}{36}x^{2}y^{2}}{\frac{25}{64}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
न्युमरेटर आनी डिनोमिनेटर अशा दोगांचेरूय x^{2}y^{2} रद्द करचो.
\left(\frac{\frac{25}{36}x^{2}y^{2}\times 64}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{25}{64} च्या पुरकाक \frac{25}{36}x^{2}y^{2} गुणून \frac{25}{64} न \frac{25}{36}x^{2}y^{2} क भाग लावचो.
\left(\frac{\frac{400}{9}x^{2}y^{2}}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{400}{9} मेळोवंक \frac{25}{36} आनी 64 गुणचें.
\left(\frac{16}{9}x^{2}y^{2}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{16}{9}x^{2}y^{2} मेळोवंक \frac{400}{9}x^{2}y^{2} क 25 न भाग लावचो.
\left(\frac{16}{9}x^{2}y^{2}-\frac{3}{2}x^{2}y^{2}\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{3}{2}x^{2}y^{2} मेळोवंक \frac{5}{3}x^{2}y^{2} आनी -\frac{1}{6}x^{2}y^{2} एकठांय करचें.
\frac{5}{18}x^{2}y^{2}\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
\frac{5}{18}x^{2}y^{2} मेळोवंक \frac{16}{9}x^{2}y^{2} आनी -\frac{3}{2}x^{2}y^{2} एकठांय करचें.
\frac{5}{18}x^{2}y^{2}\times \frac{14}{15}xy
\frac{14}{15}xy मेळोवंक \frac{4}{3}xy आनी -\frac{2}{5}xy एकठांय करचें.
\frac{7}{27}x^{2}y^{2}xy
\frac{7}{27} मेळोवंक \frac{5}{18} आनी \frac{14}{15} गुणचें.
\frac{7}{27}x^{3}y^{2}y
समान मूळाचो पावर गुणूंक, ताचो ऍक्सपोनंट जोडचो. 3 मेळोवंक 2 आनी 1 जोडचो.
\frac{7}{27}x^{3}y^{3}
समान मूळाचो पावर गुणूंक, ताचो ऍक्सपोनंट जोडचो. 3 मेळोवंक 2 आनी 1 जोडचो.
देखीक
द्विघात समीकरण
{ x } ^ { 2 } - 4 x - 5 = 0
त्रिकोणमिती
4 \sin \theta \cos \theta = 2 \sin \theta
रेखीय समीकरण
y = 3x + 4
गणीत
699 * 533
मॅट्रिक्स
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
समकालीन समीकरण
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
भेदभाव
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
एकीकरण
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
मर्यादा
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}